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CHAPTER - 3

NUMERICAL METHODS AND OPTIMIZATION TECHNIQUES

t In chemical engineering practise data is often given for 
discrete values along a continium. However,a chemical engineer may 
often require estimates between the discrete values and in certain 
cases, beyond the ranges of measured variables. If a data fit has 
already been obtained in terms of a generalised correlation, then 

such a correlation could be used conveniently for interpolation or 
extrapolation of the data.

Parametric data having multivariable dependencies cannot be 
utilised for interpolation or extrapolation unless all but one of 
the variables, fall in the parametric ranges of the measured data. 
Therefore, in order to predict or forecast the values of such 
multivariable dependent parameters, an appropriate generalised 
correlation between the concerned parameter and the independent 
variables is necessary.

Generalised correlations in chemical engineering are often 
expressed in terms of dimensionless numbers instead of fundamental 
variables. The important advantage of obtaining correlations using 
dimensionless numbers is that it interweaves a physical picture with 
the parametric dependency in terms of force ratio's etc. and 
thereby elevates the mathematical curve fitting process into realms 
of physical interpretation. The other advantage is that by using
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dimensionless numbers often the dimensionality of the problem gets 

substantially reduced due to the lumping of different variables. 

Thus , for example, to obtain a correlation for liquid side mass 

transfer coefficient (kL) one has to use five fundamental variables 

such as liquid density, viscosity, velocity, characteristic length 

and diffusivity of the solute in the liquid ; however to obtain the 

same correlation for k^ one has to use only two dimensionless 

numbers, that is, the Reynold's and Schmidt number.

Numerical methods and optimization techniques which could be 

used conveniently for obtaining generalised correlations have been 

outlined in the following pages.

3.1.0 MULTIPLE LINEAR REGRESSION :

In general, any parameter (y) could be correlated to

different variables (x^, x2,..... . xr) by the following power law

equa tion:-

y = aQ xaal x2a2 ........ xmam (3.1)

The above equation (3.1) can be transformed into a linear 

equation as under

log y = log aQ + a1 log x1 + a2 log x2 ...... + am log xm (3.2)

By expressing all the lograthimic terms in terms of X, one can 

rewrite the equation (3.2) as under :-

a + a„ X. + a„ X0 o 11 l L
+ 8m

m mY (3.3)
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ujsing multiple linear regression, the values of coefficients 

(aQ, a^j .... a^) can be obtained by the solution of the
Iundermentioned matrix.
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The relevant details about the formulation of set of 
simultaneous (normal) equations are reported in reference

i

(122,123,124) .
I

3.1.1 Solution techniques for simultaneous (normal) equations :

The normal equations formulated by multiple linear 
regression1 may be solved by any of the standard elimination methods 

viz. Gauss elimination, L.U. decomposition etc. The precision of 
solution Jbtained by elimination methods is likely to be affected by

round off errors. Hence, Chapra and Canale (124) recommend the
matrix inversion aproach such as. Gauss Jordan method for solution

i
of the normal equations, wherein the standard computer software of

IConstantinides (125) could be conveniently used.

Another method of solution of simultaneous equations is to 
use a 'iterative method, such as Gauss Seidel which is very accurate 

and not prone to round off error as the earlier mentioned methods.
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This method is most reliable for systems which are diagonally
dominant. In other cases i t may not always converge or sometimes
converges very slowly on the true solution. Since the normal
equa tions obtained by multiple linear regresssion may not be
diagonal ly dominant, i t is 1ikely that Gauss Seidel may not converge
to a solution in some cases.

3.2.0 UNCONSTRAINED OPTIMIZATION :

Multiple linear regression may be utilised to obtain the 
coefficient values of a nonlinear powerlaw type model : However 
there is a loss of sensititvity due to the lograthimic 
transformation. Moreover the standard methods of solution mentioned 
earlier yield exact mathematical solutions, which may not always be 
amenable to physical interpretation. For hypothesis testing it is 
more convenient to obtain a set of solutions within a prescribed 
range of error and then analyse the different solutions in the light 
of physical interpretation of the phenomena. Thus , uncons trained 
optimization could be adopted conveniently to yield the appropriate 
coefficient values.

Selection of algorithm largely depends on the objective of 
the task. If the objective of optimization is to obtain suitable 
coefficients which minimise the relative error the objective 
function could be defined as "Error = |(dev/exp)|". In view of 
the nondifferentiable nature of the function , only direct search
methods should be utilised.
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An indepth review of the numerical direct search methods for 

unconstrained optimization has been provided by Swann (126). It 
appears that most of the numerical direct search unconstrained 
optimization methods are essentially based on the philosophy of the 
alternating variable method wherein a set of directions is defined 
which can be used to explore the parametric space. Thus, for the 
case of multivariable optimization problem of minimization of 
certain objective function, it consists of minimizing with respect 
to each independent variable in turn. Starting with initial 
approximation, the variable x^ is altered, with variables x2,
x_...... x held constant, until a minimum of the objective function
is located where upon x^ is fixed and x2 explored in the same way 

and so on until xr has been explored. In practice, the alternating 
variable method is usually inefficient and the progress is 
characterised by oscillatory behaviour. Many investigators 
(127 to 129) have proposed modifications to the alternating variable 
method based on the observation that the begining and end of a 
directional search cycle determine a line along which more 
substantial progress may be made. Fletcher (130,131) has indicated 
that the most efficient of such modified methods, is the method 
proposed by Davis, Swann and Compey (129), known as "DSC Method".

3.2.1 DSC algorithm :

In the DSC algorithm, minima in a direction is located by 
fitting a quadratic to three points in the neighbourhood of the 
minima, differentiating the resulting equation and equating it to
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zero gives a reasonable estimate of the minima. This algorithm 
moves in the descent direction using a step size always twice the 
previous, until a function value f^ is found which exceeds the 
previous value f^. At this stage a step is made in the reverse
direction to obtain a point equidistant between the earlier two 
steps (having function value f2) thereby implying that four 
equidistant points are obtained of which three are selected to 
define a quadratic. The point which is farthest from the point 
having the lowest of the four function values is rejected. If the 
function values corresponding to the equispaced points 34, *2 and x3 

are f^, f^, and f^ where f2 is the current lowest value 
corresponding to x2 then the quadratic through points, , x2 and x^ 
has a minimum at (x2 + A m). Where & is the initial step size and 
m is-given by the following equation (3.4).

A m
2 (f1-2f2+f3)

(3.4)

Having obtained the estimate of minimum location, the 
direction of the search may be altered towards other variables.

3.2.2 Powell's algorithm :

The most successful of direct search methods is the 
algorithm due to Powell (132). This algorithm effectively uses the 
history of iterations to build up directions for acceleration and at 
same time avoids degenerating to a sequence of coordinate searches 
this algorithm however requires the minimum to be bracketed, (i.e. 
minima range to be prespecifed).
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The theoretical features of this algorithm are discussed by 
Reklaitis ,et al. (133). The most salient feature is that a 
quadratic approximation is carried out using the first three points 
obtained in the direction of search, and these quadratic 
approximations are continued until the minimum f(x) is located to 
the required precision. Therefore , the minimum position xffi from 
function values f^, fg at points x^, x^, Xg is given by the
undermentioned equation (3.5).

1
, 2 (x2 - 2.. ,2 x3 f1 + {x3 - xj)f2 + (Xj - x2> f3

m " 2
ix2 - x3)fi +(x3 - Xl,f2 * (Xj - X2Jf3 _

3.2.3 Combination algorithm : D S C - Powell algorithm :

The DSC search described earlier does not require the 
optimum to be bracketed (i.e. range to be prespecified), however it 
moves very rapidly (as a increases) to bracket the optimum. 
Powell's method which is very efficient requires the minimum to be 
bracketed. , Therefore, Box et al. (134) recommend that these 
algorithms should be combined. Thus ,initia1ly one requires to 
perform a single stage of the DSC method to obtain a bracket on xm 
and then switch over to Powell's algorithm, thereby benefitting from 
the advantages of both the techniques.

The algorithms of the DSC method and Powell's method for 
univariate optimization are discussed by numerous authors (131,133 - 
137), Beightler et al. (136) have demonstrated the use of both 
these algorithms for solution of simple quadratic functions.
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Robinson (137) has presented complete logic diagrams for both these 
methods for univariate search.

The above mentioned information available in the literature 
could be utilised to design a multivariable general purpose 
optimization software.

3.2.4 Simplex algorithm :

A completely different approach to the problem of 
multivariable minimization using the direct-search method, is that 
which explores parameter space by means of some geometric 
configuration of points rather than a set of directions. This 

approach was utilised by Spendley et al. (138) to develop the 
original simplex method.

The simplex search is based on the observation that the 
first order experimental design requiring smallest number of points 
is the regular simplex. In N dimension, a regular simplex is a 
polyhedron composed of N + 1 equidistant points which form its 
vertices, for example a simplex in two dimension is a equilateral 
triangle. The main property that a simplex possesses, is that, a 
new simplex can be formed on any face of a given simplex by addition 
of only one point.

The method begins by setting up a regular simplex in the 
space of the independent variables and evaluating the function of 
each vertex. The vertex with highest functional value is located. 
This worst, vertix is then reflected through the centeroid of
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remaining vertices to generate a new point which is used to complete 
the next simplex. Thus,the simplex proceeds to search the minimum. 
In regions jnear the minima, there is a scope to reduce the size of 
simplex by jcertain scaling rules suggested by Spendley et al. (138).

I
Simplex movement, convergence criteria and such relevant details 
related to i the simplex algorithm are mentioned in the references

i(133, 139 -| 143] .
? !1

3.2.5 Modified simplex algorithm :
Ii
iThe original simplex method is a slow algorithm and has

scaling problems i.e. the size of simplex cannot be expanded. To
!overcome such difficulties, Nelder and Mead (140) have suggestedi

modifications, wherein the regularity of design is abandoned and the 
simplex aujtoma t ical ly rescales itself according to the local

I
geometry of the function under investigation, through steps likeIiref lection,I expansion and contraction.

fI
Suppose that for iteration k,the vertices of the simplex are k k I k

x , x, , .i. .. x and corresponding function values F , F,, .... F‘o l in ^ ° o 1 n1 kordered such that F > F . >...... > F, > F where x is the| n ' n-1 1 o o
jkbest vertix and x„ is the worst. Let 'c' be the centroid of the ; n1c ic 1cvertices xqi , x^...... xn-l 8*ven by equation (3.6).

I ^ n-1
c |=-- I x^ , (3.6)
i ; Ji
in . „I J = 0
Iwhere i = lj to n

I
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• kThen,as in Ithe original simplex method,the worst vertex xfl is to be
i

replaced and a simple reflection move is tried first using a 

reflection ieoefficient a (where a > 0) ; thereby obtaining a new
u 1

point (xr ); as shown in equation (3.7).

kl k „ , k k. , 0 „,
xi=c+a(c-x) (3.7)
r * n \iiI k

Thejre are then three possible cases to be considered : xr
i lr

is a point Isuch that F < F < F . ; F < F so that wouldr j o r n-1 o r
i k

be a new best point ; F > F , so that x would be a new worstI r n-1 r
point. |

j

I j£
In ;the case F < F < F . .then x replaces x and the| o r n-1’ r v n

iteration in complete.

Howjever,if reflection produces the best point then, in the
I

direction of reflection% the simplex expands by defining the point 
k !

(x ), using a expansion coefficient 8 (where 8 > 1 ) as shown in
0

t

equation (3.j8).
|

k| k o , k k. , o a -i
= c + p (x - c ) (3.8)

o i r

If F < F the expansion is considered to be successful and 
| 0 o

Jc * k

xq replaces xr ; otherwise the expansion is deemed to have failed 
k I k

and x„ is replaced by x„ . In either event the iteration is then n | r v
complete. |

j

If original reflection resulted in a new worst point,then it
1Iis assumed ithat the size of design is too large to allow any
I

progress to[be made; therefore simplex contracts by defining points
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x using a contraction coefficient Y (0 < Y <1).
U '

c;
i

L

k v , k k, c + Y (x^ - c )

k , k k,c + Y (xr ~ c )

if F < F n r

if F > F n r

. . (3.9)

If F„ < !min (F , F ) then x replaces x ; otherwise a more c , n r c ^ n
comprehensive contraction is carried out by having the distances

!from the best point xQ of all the other vertices of the simplex. 
In either cjase the iteration is then complete.

Using steps of reflection, expansion and contraction the
iteration | continues till the function values do not vary

Isignificantly. Nelder and Mead (140) recommend the values of a = 1, 

6=2, y = 0.5 to be employed. Numerical comparison by Box and
IDraper (134|) i ndi ca tes thi s algorithm to be the most efficient of all 

sequential ! techniques, very reliable and extremely robust. 

Parkinson ! and Hutchinson (141) investigated the manner of
construction of initial simplex and observed that the shape of

iinitial simplex was not important.
i

In presence of constraints on the objective function, the
generation jof initial simplex is problematic because, for any given

|
simplex size parameter a, it is likely that many points of the 
regular simplex could be unfeasible. In order to overcome this

I
t *difficulty ,jBox (144) proposed a set of trial points be generated 

randomly anjd sequentially. The total number of points (P) to be used 
should be no less than N+l but can be larger. The recommended value

i

of P based |on numerical experiments by Box happens to be P = 2N.
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3.3.0 SALIENT FEATURES OF THE SOFTWARE DEVELOPED IN THIS 
INVESTIGATION :

The software developed in this work based on the DSC-Powell 
combination algorithm has the flexibility to optimise any nonlinear 
function which may be included in the subroutine called ERROR, that 
is, ERROR is user specific and does not interfere with the main body 
of the program. Subroutine ERROR should calculate and return 'error 
values' corresponding to the current values of variables K2 etc.

The main body of program is oriented towards generation of 
the equidistant points required in the DSC method for quadratic 
fitting. Once such points are generated the informaton is 
transferred to a subroutine DSC wherein the quadratic fitting as in 
equation (3.4) is done. This subroutine generates the DSC optima 
values in one direction thereby bracketing the optima. At this 
stage the information is transferred to the main program for Powell 
search wherein the value of minima in one direction (variable under 
consideration) is obtained. There after retaining the value of 
minima of the variable for which the search has concluded, the 
direction of optimization is changed and second variable is 
optimized in likewise manner. When the values of minima for all the 
variables under consideration have been obtained one cycle of 
iterations is over and the prescribed accuracy-of convergence is 
checked. If the accuracy conditions are satisfied,the minima values
so obtained are designated as optimum values and the program comes 
to its logical end. Otherwise, if convergence conditions are not
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satisfied , the entire process of DSC-Poweil search is repeated until 
optimum values are obtained which satisfy the convergence criterion.

I
I

A programme incorporating all the above mentioned aspects
i

which could be conveniently used to optimize upto six variables is
!

listed in Appendix (A_.2.1)

In j this investigationr, the modified simplex algorithm of
Nelder and iMead (140) has also been used. The salient features of

j
this software adopted in this work are the following Standard
codes for tjhis algorithm is available in literature (142,143). The 
program in BASIC developed by Valko and Vajda (143) could be adopted
conveniently for this purpose. For objective functions with[
implicit constraints, the recomflrenda t ion due to Box (144) could be 
easily implbmented by setting the value of P to 2N instead of N+l.
Further,thejpoints could be generated randomly and sequentially with 
minor modifications in the program. The detailed program

i

incorporating these changes in Nelder and Meads simplex algorithm
i

proposed byiValko and Vajda is listed in Appendix (A.2.2).


