

NOTATIONS

. .

.

4

•

4

ł

NOTATION

 $A_E = \%$ aromatics extracted

- a = interfacial area per unit volume of contactor, L^2/L^3 , L^{-1}
- $a_t = surface area of packing per unit, L^2/L^3, L^{-1}$
- $d_v = packing size, L$
- d_T =tower diameter, L
- d_{us} = Sautermean diameter of droplets, L
- d_{us}^o =characteristic droplet diameter, L
- D = diffusivity of solute, L^2T^{-1}
- E = solubility of solute in the phase in which it is transferred, ML^{-3}
- G =flow rate $MT^{-1}L^{-2}$
- g = gravitational constant, LT^{-2}
- HTU^{-} = height of transfer unit, L
- H_B = Concentration of solute in the extract phase expressed as gm. of solute per gm. of solvent in the extract phase.
- H'_B = Concentration of solute in raffinate phase, expressed as gm. of solute per gm. of non-solute in the raffinate phase.
- H_B^* = Equilibrium value of Concentration of solute in the extract phase expressed as gm. of solute per gm. of solvent in the extract phase.
- $H'_B^* =$ Equilibrium value of Concentration of solute in raffinate phase, expressed as gm. of solute per gm. of non-solute in the raffinate phase.

k_c.=individual continuous phase mass transfer coefficient LT⁻¹

- k_d = individual dispersed phase mass transfer coefficient, LT⁻¹
- k ' = Pseudo-first order reaction rate constant, T^{-1}
- K_L = mass transfer coefficient in the phase where reaction is taking place39, LT^{-1}
- K_{oca} = overall volumetric mass transfer coefficient based on continuous phase, T^{-1}
- K_{oda} = overall volumetric mass transfer coefficient based on dispersed phase, T⁻¹
- L = ratio of dispersed phase to continuous phase velocities, V_d/V_c
- m = slope of the equilibrium line
- N.T.U.= Number of transfer units
- NSc = Schemidt number, $\mu/(p D)$
- % P_E =% purity of extract
- R = specific rate of extraction, $ML^{-2}T^{-1}$
- R_{cd}^{\dagger} = characteristic Reynolds number of dispersed phase

S/F=solvent to feed ratio, by wt. or by vol.

- V = superfacial velocity of the phase, LT^{-1} Vo = characteristic velocity, LT^{-1}
- $V_s = slip velocity, LT^{-1}$
- V_t = terminal velocity of liquid drops, LT^{-1}
- W_e = modified Weber number
- X = fractional hold-up of dispersed phase

GREEK LETTERS

- O = contact time T
- γ = interfacial tension, FL⁻¹
- ε = fractional voidage of column

 μ = viscosity, ML⁻¹ T⁻¹

 $p = density, ML^{-3}$

 Δp = density difference, ML⁻³

 σ = surface tension, FL⁻¹

σcr =critical surface tension

SUBSCRIPTS

c = continuous phase

- d = dispersed phase
- f = flooding conditions

o = overall

s = fluid which does not wet the packing preferentially

w = fluid which preferentially wets the packing

1=based on Vd

2= based on Vd+Vc

SPECIFIC NOTATIONS

Various constants

K, n = Constants in Hand's correlation.

 K_c , $n_c = Constants$ in Campbell's correlation.

 $k_B \cdot {}^n_B$ = Constants in Batchman's correlation.

 $k_{0,T} \stackrel{n}{}_{0,T} = Constants in Othmer and Tobia$

(ii) Composition on Weight Basis :-

X HE =Wt. fraction of Hexane Extract

X HR = Wt. fraction of Hexane Raffinate

X SE = Wt. fraction of Solvent Extract X SR = Wt. fraction of Solvent Raffinate XBE =Wt. Fraction of Benzene in extract XBR=Wt. Fraction of Benzene in raffinate XD'E+WE=Wt. Fraction of Dmso+Water in extract XD'R+WR=Wt. Fraction of Dmso+Water in raffinate XD'E+WE= wt. fraction of dmso+water in extract XDE+WE=Wt. Fraction of Dmf+Water in extract XDR+WR=Wt. Fraction of Dmf+Water in raffinate XH'E=Wt. Fraction of Heptane in extract XH'R= wt. fraction of Heptane raffinate (iii) Flow rates in Packed column operation: Vci= continuous phase flow rate in let, LT^{-1} Vco= continuous phase flow rate out let, LT^{-1} Vdi= dispersed phase flow rate in let, LT^{-1} Vdo= dispersed phase flow rate out let, LT^{-1} Vcavg= Average continuous phase flow rate LT⁻¹ Vdavg g= Average dispersed phase flow rate LT^{-1}

R.IE= Refractive Index Extract phase.

R.IR= Refractive Index raffinate. phase.

(iv) For Packed column internals.

I.D=. inside diameter of Packing cm

O.D=. out side diameter of Packing cm

L = Length of one Packing. cm

dp = diameter of Packing . cm

dc= diameter of column cm

(v) Abbreviations for Chemicals

A= aromatics

Dmf = dimethyl formamide

Dmso = dimethyl sulfoxide

DEG = diethylene glycol

TEG = triethylene glycol

H-Hexane, T=Toluene X=Xylene

H'=Heptane, O=Octane,