Table index

Appendix: II: Data Processing Tables for Distribution & Selectivity Diagrams

Table No	Contents	Page
Table. –D-1	Data for Construction of Distribution Diagrams for System:	91
	B-H-Dmf+W at Different Temperatures with Anti Solvent	
	Concentrations as a Parameter	
Table D-2	Data for Construction of Distribution Diagrams for System:	92
	T-H-Dmf+W at Different Temperatures with Anti Solvent	
	Concentrations as a Parameter	
Table D-3	Data for Construction of Distribution Diagrams for System:	93
	X-H-Dmf+W at Different Temperatures with Anti Solvent	
	Concentrations as a Parameter	
Table D-4	Data for Construction of Distribution Diagrams for System:	94
	B-Hep-Dmf+W at Different Temperatures with Anti Solvent	
	Concentrations as a Parameter	
Table - D-5	Data for Construction of Distribution Diagrams for System:	95
	B-Oct-Dmf+W at Different Temperatures with Anti Solvent	
	Concentrations as a Parameter	
Table - D-6	Data for Construction of Distribution Diagrams for System:	96
	B-H-Dmso+W at Different Temperatures with Anti Solvent	
•	Concentrations as a Parameter	
Table D-7	Data for Construction of Distribution Diagrams for System:	97
	T-H-Dmso+W at Different Temperatures with Anti Solvent	
•	Concentrations as a Parameter	
Table D-8	Data for Construction of Distribution Diagrams for System:	98
	X-H-Dmso+W at Different Temperatures with Anti Solvent	
	Concentrations as a Parameter	
Table D-9	Data for Construction of Distribution Diagrams for System:	99
	B-Hep-Dmso+W at Different Temperatures with Anti Solvent	
	Concentrations as a Parameter	

Table - D-10	Data for Construction of Distribution Diagrams for System:	100
	B-Oct-Dmso+W at Different Temperatures with Anti Solvent	
	Concentrations as a Parameter	
Table D-11	Data for Construction of Distribution Diagrams for System:	101
	B-H-Dmf-W at Different Anti Solvent Concentrations with	
	Temperatures as a Parameter	
Table D-12 I	Data for Construction of Distribution Diagrams for System:	102
•	T-H-Dmf-W at Different Anti Solvent Concentrations with	
•	Temperature as a Parameter.	
Table D-13 I	Data for Construction of Distribution Diagrams for System:	103
	X-H-Dmf-W at Different Anti Solvent Concentrations with	٠
	Temperature as a Parameter.	
Table D-14 I	Data for Construction of Distribution Diagrams for System::	104
	B-Hep-Dmf-W at Different Anti Solvent Concentrations with	
	Temperature as a Temperatures with Parameter.	
Table D-15 D	Data for Construction of Distribution Diagrams for System:	105
•	B-Oct-Dmf-W at Different Anti Solvent Concentrations with	
	Temperature as a Parameter	
Table D-16 I	Data for Construction of Distribution Diagrams for System:	106
,	B-H-Dmso-W at Different Anti Solvent Concentrations with	
	Temperature as a Parameter.	
Table D-17 I	Data for Construction of Distribution Diagrams for System:	107
,	T-H-Dmso-W at Different Anti Solvent Concentrations with	
	Temperature as a Parameter	
Table D-18 D	Data for Construction of Distribution Diagrams for System:	108
	X-H-Dmso-W at Different Anti Solvent Concentrations with	
	Temperature as a Parameter	
Table D-19 D	Pata for Construction of Distribution Diagrams for System:	109
	B-Hep-Dmso-W at Different Anti Solvent Concentrations with	
	Temperatures as a Parameter.	
Table D-20 D	Data for Construction of Distribution Diagrams for System:	110
•	B-Oct-Dmso-W-W at Different Anti Solvent Concentrations with	
	Temperatures as a Parameter.	

Table D-21 Data for Construction of Distribution Diagrams for System::	111
B-T-X-100%Dmf+0%W at Different Temperatures with Aromatic	Effect
as a Parameter	
Table D 22 Data for Construction of Distribution Diagrams for System:	112
B-T-X-90%Dmf+10%W at Different Temperatures with Aromatic	Effect
as a Parameter.	
Table D-23 Data for Construction of Distribution Diagrams for System:	113
B-T-X-80%Dmf+20%W at Different Temperatures with Aromatic	Effect
as a Parameter	
Table D -24 Data for Construction of Distribution Diagrams for System:	114
B-T-X-100%Dmso+0%Wat Different Temperatures with Aromatic	;
Effect	
as a Parameter.	
Table D -25 Data for Construction of Distribution Diagrams for System:	115
: B-T-X-90%Dmso+10%Wat Different Temperatures with Aromatic	>
Effect as a Parameter.	
Table D -26 Data for Construction of Distribution Diagrams for System:	116
: B-T-X-80%Dmso+20%Wat Different Temperatures with Aromatic	
Effect as a Parameter.	
Table D-27 Data for Construction of Distribution Diagrams for System:	117
B-H-Hep-Oct-100%Dmf+0%Wat Different Temperatures with Alip	ohatic
Effect as a Parameter.	
Table D-28 Data for Construction of Distribution Diagrams for System	118
B-H-Hep-Oct-90%Dmf+10%Wat Different Temperatures with Alip	ohatic
Effect as a Parameter.	
Table D-29 Data for Construction of Distribution Diagrams for System:	119
B-H-Hep-Oct-80%Dmf+20%Wat Different Temperatures with Alip	ohatic
Effect as a Parameter.	
Table D-30 Data for Construction of Distribution Diagrams for System:	120
B-H-Hep-Oct-100%Dmso+0%Wat Different Temperatures with	
Aliphatic Effect as a Parameter.	
Table D-31 Data for Construction of Distribution Diagrams for System	121
B-H-Hep-Oct-90%Dmso+10%Wat Different Temperatures with	
Aliphatic Effect as a Parameter.	

Table D-32	Data for Construction of Distribution Diagrams for System:	122
	B-H-Hep-Oct-80%Dmso+20%Wat Different Temperatures with	
	Aliphatic Effect as a Parameter.	
.Table. –S-1	Data for Construction of Selectivity Diagrams for System:	123
	B-H-Dmf-Wat Different Temperature with Anti Solvent Concentr	rations
	as a Parameter.	
Table. –S-2	Data for Construction of Selectivity Diagrams for System::	124
	T-H-Dmf+Wat Different Temperatures with Anti Solvent Concen	trations
	as a Parameter.	
Table. –S-3	Data for Construction of Selectivity Diagrams for System:	125
	X-H-Dmf-Wat Different Temperature with Anti Solvent Concent	rations
•	as a Parameter.	
Table S -4	Data for Construction of Selectivity Diagrams for System:	126
	B-Hep-Dmf-Wat Different Temperature with Anti Solvent	
	Concentrations as a Parameter.	
Table - S -5	Data for Construction of Selectivity Diagrams for System:	127
	B-Oct-Dmf+Wat Different Temperatures with Anti Solvent	
	Concentrations as a Parameter.	
Table – S-6	Data for Construction of Selectivity Diagrams for System:	128
	B-H-Dmso-Wat Different Temperature with Anti Solvent	
	Concentrations as a Parameter.	
Table S -7	Data for Construction of Selectivity Diagrams for System:	129
	T-H-Dmso-Wat Different Temperature with Anti Solvent	
	Concentrations as a Parameter.	
Table S-8	Data for Construction of Selectivity Diagrams for System:	130
	X-H-Dmso+Wat Different Temperatures with Anti Solvent	
	Concentrations as a Parameter.	
Table S -9	Data for Construction of Selectivity Diagrams for System:	131
	B-Hep-Dmso-Wat Different Temperature with Anti Solvent	
	Concentrations as a Parameter.	٠
.Table S -10	Data for Construction of Selectivity Diagrams for System:	132
	B-Oct-Dmso-Wat Different Temperature with Anti Solvent	
	Concentrations as a Parameter	

.Table S-11	Data for Construction of Selectivity Diagrams for System:	133
	B-H-Dmf+Wat Different Anti Solvent Concentrations Concentration	ns
	with Temperatures as a Parameter.	
Table S −12	Data for Construction of Selectivity Diagrams for System:	134
	T-H-Dmf+Wat Different Anti Solvent Concentrations Concentratio	ns
	with Temperatures as a Parameter	
Table S −13	Data for Construction of Selectivity Diagrams for System:	135
	X-H-Dmf+Wat Different Anti Solvent Concentrations Concentration	ns
	with Temperatures as a Parameter.	
Table S -14	Data for Construction of Selectivity Diagrams for System::	136
	B-Hep-Dmf+Wat Different Anti Solvent Concentrations with	
	Temperatures as a Parameter.	
Table S -15	Data for Construction of Selectivity Diagrams for System::	137
•	B-Oct-Dmf+Wat Different Anti Solvent Concentrations with	
	Temperatures as a Parameter.	
Table S −16	Data for Construction of Selectivity Diagrams for System::	138
	B-H-Dmso+Wat Different Anti Solvent Concentrations with	
	Temperatures as a Parameter.	
Table. – S- 17	Data for Construction of Selectivity Diagrams for System:	139
	T-H-Dmso+Wat Different Anti Solvent Concentrations with	
	Temperatures as a Parameter.	
Table. – S- 18	Data for Construction of Selectivity Diagrams for System:	140
	X-H-Dmso+Wat Different Anti Solvent Concentrations with	
	Temperatures as a Parameter.	
Table. –S-19	Data for Construction of Selectivity Diagrams for System:	141
	B-Hep-Dmso+ W at Different Anti Solvent Concentrations with	
	Temperatures as a Parameter.	
Table. – S-20	Data for Construction of Selectivity Diagrams for System:	142
	B-Oct-Dmso+ W at Different Anti Solvent Concentrations with	
	Temperatures as a Parameter.	
.Table S –21	Data for Construction of Selectivity Diagrams for System:	143
	B-T-X-100%Dmf+0% W at Different Temperatures with Aromatic	
	Effect as a Parameter.	

Table S -22 Data for Construction of Selectivity Diagrams for System::	144
B-T-X-90%Dmf+10% W at Different Temperatures with Aromatic	2
Effect as a Parameter.	
Table S-23 Data for Construction of Selectivity Diagrams for System:	145
B-T-X-80%Dmf+20% W at Different Temperatures with Aromatic	
Effect as a Parameter.	
Table S -24 Data for Construction of Selectivity Diagrams for System:	146
: B-T-X-100%Dmso+0%W at Different Temperatures with Aromati	c
Effect as a Parameter.	
Table S -25 Data for Construction of Selectivity Diagrams for System:	. 147
B-T-X-90%Dmso+10%W at Different Temperatures with Aromati	c
Effect as a Parameter.	
Table S -26 Data for Construction of Selectivity Diagrams for System	148
B-T-X-80%Dmso+20%W at Different Temperatures with Aromatic	3
Effect as a Parameter.	
Table S –27 Data for Construction of Selectivity Diagrams for System	149
B-H-Hep-100%Oct-Dmf+0%W at Different Temperatures with	
Aliphatic Effect as a Parameter.	
Table S –28 Data for Construction of Selectivity Diagrams for System	150
B-H-Hep-Oct-90%Dmf+10%W at Different Temperatures with	
Aliphatic Effect as a Parameter.	
Table S-29 Data for Construction of Selectivity Diagrams for System	151
B-H-Hep-Oct-80%Dmf+20%W at Different Temperatures with	
Aliphatic Effect as a Parameter.	
Table S –30 Data for Construction of Selectivity Diagrams for System	152
B-H-Hep-Oct-100%Dmso+0%W at Different Temperatures with	
Aliphatic Effect as a Parameter.	
Table S –31 Data for Construction of Selectivity Diagrams for System	153
B-H-Hep-Oct-90%Dmso+10%W at Different Temperatures with	
Aliphatic Effect as a Parameter.	
Table S –32 Data for Construction of Selectivity Diagrams for System	154
B-H-Hep-Oct-80%Dmso+20%W at Different Temperatures with	
Aliphatic Effect as a Parameter	

Table index

Appendix III:Data: Processing Tables in terms of Weight Percent & Mole Fraction

Figure No	Contents	Page
Table-W - 1.1	Tie-Line data in terms of Weight Percent & Mole Fraction	155
•	System Benzene-Hexane-Dmf-W at 20 °C	
Table-W - 1.2	2 Tie-Line data in terms of Weight Percent & Mole Fraction	156
	System Benzene-Hexane-Dmf-W at 30 °C	
Table-W - 1.3	3 Tie-Line data in terms of Weight Percent & Mole Fraction	157
	System toluene-Hexane-Dmf-W at 20°C	
Table-W - 1.4	Tie-Line data in terms of Weight Percent & Mole Fraction	158
	System toluene-Hexane-Dmf-W at 30 °C	
Table-W - 1.5	Tie-Line data in terms of Weight Percent & Mole Fraction	159
•	System toluene-Hexane-Dmf-W at 40°C	
Table-W - 1.6	Tie-Line data in terms of Weight Percent & Mole Fraction	160
	System Xylene-Hexane-Dmf-W at 20°C	
Table-W - 1.7	7 Tie-Line data in terms of Weight Percent & Mole Fraction	161
	System Xylene-Hexane-Dmf-W at 30°C	*
Table-W - 1.8	3 Tie-Line data in terms of Weight Percent & Mole Fraction	162
	System Xylene-Hexane-Dmf-W at 40°C	
Table-W - 1.9	Tie-Line data in terms of Weight Percent & Mole Fraction	163
	System Benzene-Heptane-Dmf-W at 20°C	
Table-W - 1.1	0 Tie-Line data in terms of Weight Percent & Mole Fraction	164
	System Benzene-Hept(H')-Dmf(D) -W at 30°C	
Table-W - 1.1	1 Tie-Line data in terms of Weight Percent & Mole Fraction	165
•	System Benzene-Heptane-Dmf-W at 40°C	
Table-W - 1.1	2 Tie-Line data in terms of Weight Percent & Mole Fraction	166
	System Benzene-Oct-Dmf-W at 20°C	
Table-W - 1.1	3 Tie-Line data in terms of Weight Percent & Mole Fraction	167
•	System Benzene-Oct-Dmf-W at 30°C	
Table-W - 1.1	4 Tie-Line data in terms of Weight Percent & Mole Fraction	168
	System Benzene-Oct-Dmf-W at 40°C	

Table-W - 2.1 Tie-Line data in terms of Weight Percent & Mole Fraction	169
System Benzene-Hexane-Dmso-W at 20°C	
Table-W - 2.2 Tie-Line data in terms of Weight Percent & Mole Fraction	170
System Benzene-Hexane-Dmso-W at 30°C	
Table-W - 2.3 Tie-Line data in terms of Weight Percent & Mole Fraction	171
System Benzene-Hexane-Dmso-W at 40°C	
Table-W - 2.4 Tie-Line Data in terms of Weight Percent & Mole Fraction	172
System toulene-Hexane-Dmso-W at 20°C	
Table-W - 2.5 Tie-Line Data in terms of Weight Percent & Mole Fraction	173
System toulene-Hexane-Dmso-W at 30°C	·
Table-W - 2.6 Tie-Line Data in terms of Weight Percent & Mole Fraction	174
System toulene-Hexane-Dmso-W at 40°C	
Table-W - 2.7 Tie-Line Data in terms of Weight Percent & Mole Fraction	175
System Xylene-Hexane-Dmso-W at 20°C	
Table-W - 2.8 Tie-Line Data in terms of Weight Percent & Mole Fraction	176
System Xylene-Hexane-Dmso-W at 30°C	
Table-W - 2.9 Tie-Line Data in terms of Weight Percent & Mole Fraction	177
System Xylene-Hexane-Dmso-W at 40°C	
Table-W - 2.10 Tie-Line Data in terms of Weight Percent & Mole Fraction	178
System Benzene- Hep-Dmso -W at 20°C	
Table-W - 2.11 Tie-Line Data in terms of Weight Percent & Mole Fraction	179
System Benzene- Hep-Dmso -W at 30 °C	
Table-W - 2.12 Tie-Line Data in terms of Weight Percent & Mole Fraction	180
System Benzene-Hept-Dmso-W at 40°C	
Table-W - 2.13 Tie-Line Data in terms of Weight Percent & Mole Fraction	181
System Benzene- Oct-Dmso -W at 20 °C	
Table-W - 2.14 Tie-Line Data in terms of Weight Percent & Mole Fraction	182
System Benzene- Oct-Dmso -W at 30 °C	
Table-W - 2.15 Tie-Line Data in terms of Weight Percent & Mole Fraction	183
System Benzene-Oct-Dmso -W at 40 °C	

Table index

Appendix: IV:Data Processing Tables for Computer programming: Details of NRTL method

Table No	Contents	Page
Table-1.1	Prediction of quaternary L-L equilibrium data by NRTL method	184
	Processing Data Tables for System B - H - Dmf - W at 20 °C	
Table-1.2	Prediction of quaternary L-L equilibrium data by NRTL method	190
,	Processing Data Tables for System B - H - Dmf - W at 30 °C	
Table-1.3	Prediction of quaternary L-L equilibrium data by NRTL method	196
	Processing Data Tables for System T - H - Dmf - W at 20 °C	
Table-1.4	Prediction of quaternary L-L equilibrium data by NRTL method	200
	Processing Data Tables for System T - H - Dmf - W at 30 °C	
Table-1.5	Prediction of quaternary L-L equilibrium data by NRTL method	206
	Processing Data Tables for System T - H - Dmf - W at 40 °C	
Table-1.6	Prediction of quaternary L-L equilibrium data by NRTL method	212
	Processing Data Tables for System X - H - Dmf - W at 20 °C	
Table-1.7	Prediction of quaternary L-L equilibrium data by NRTL method	216
	Processing Data Tables for System X - H - Dmf - W at 40 °C	
Table-1.8	Prediction of quaternary L-L equilibrium data by NRTL method	220
٠	Processing Data Tables for System B - Hep - Dmf - W at 20 °C	
Table-1.9	Prediction of quaternary L-L equilibrium data by NRTL method	223
	Processing Data Tables for System B - Hep - Dmf - W at 30 °C	
Table-1.10	Prediction of quaternary L-L equilibrium data by NRTL method	229
	Processing Data Tables for System B - Hep - Dmf - W at 40 °C	
Table-1.11	Prediction of quaternary L-L equilibrium data by NRTL method	235
	Processing Data Tables for System B - Oct - Dmf - W at 20 °C	
Table-1.12	Prediction of quaternary L-L equilibrium data by NRTL method	241
	Processing Data Tables for System B - Oct - Dmf - W at 30 °C	
Table-1.13	Prediction of quaternary L-L equilibrium data by NRTL method	247
	Processing Data Tables for System B - Oct - Dmf - W at 40 °C	
Table-2.1	Prediction of quaternary L-L equilibrium data by NRTL method	253
	Processing Data Tables for System B - H - Dmso - W at 20 °C	

Fable-2.2 Prediction of quaternary L-L equilibrium data by NRTL method	257
Processing Data Tables for System B - H - Dmso - W at 30 °C	
Table-2.3 Prediction of quaternary L-L equilibrium data by NRTL method	263
Processing Data Tables for System B - H - Dmso - W at 40 °C	
Table-2.4 Prediction of quaternary L-L equilibrium data by NRTL method	267
Processing Data Tables for System T - H - Dmso - W at 20 °C	
Table-2.5 Prediction of quaternary L-L equilibrium data by NRTL method	273
Processing Data Tables for System T - H - Dmso - W at 30 °C	
Table-2.6 Prediction of quaternary L-L equilibrium data by NRTL method	279
Processing Data Tables for System T - H - Dmso - W at 40 °C	
Table-2.7 Prediction of quaternary L-L equilibrium data by NRTL method	285
Processing Data Tables for System X - H - Dmso - W at 20 °C	
Table-2.8 Prediction of quaternary L-L equilibrium data by NRTL method	291
Processing Data Tables for System X - H - Dmso - W at 30 °C	
Table-2.9 Prediction of quaternary L-L equilibrium data by NRTL method	297
Processing Data Tables for System X - H - Dmso - W at 40 °C	•
Table-2.10 Prediction of quaternary L-L equilibrium data by NRTL method	303
Processing Data Tables for System B - Hep - Dmso - W at 20 °C	
Table-2.11 Prediction of quaternary L-L equilibrium data by NRTL method	309
Processing Data Tables for System B - Hep - Dmso - W at 30 °C	
Table-2.12 Prediction of quaternary L-L equilibrium data by NRTL method	315
Processing Data Tables for System B - Hep - Dmso - W at 40 °C	
Table-2.13 Prediction of quaternary L-L equilibrium data by NRTL method	321
Processing Data Tables for System B - Oct - Dmso - W at 20 °C	
Table-2.14 Prediction of quaternary L-L equilibrium data by NRTL method	327
Processing Data Tables or System B - Oct - Dmso - W at 30 °C	
Table-2.15 Prediction of quaternary L-L equilibrium data by NRTL method	333
Processing Data Tables for System B - Oct - Dmso - W at 40 °C	