CHAPTER II.

,

.

. .

.

,

•

-

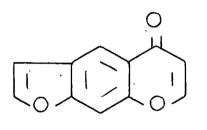
.

STUDIES IN THE SYNTHESIS OF FURO_BENZO_y-PYRONES

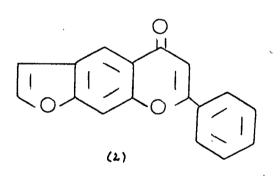
ı

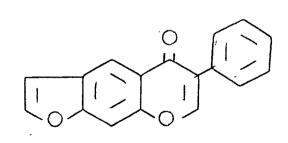
.

4

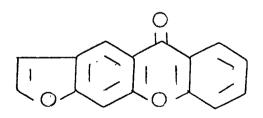

1

CHAPTER II.


Studies in the synthesis of furobenzo-y-pyrones.

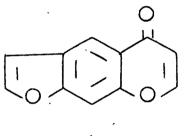

THEORETICAL.

Furobenzo-y-pyrones are the compounds which are obtained either by constructing a furan ring on a suitably substituted benzo-y-pyrone derivatives or constructing a y-pyrone ring on a suitably substituted benzofuran derivatives. These are mainly grouped into furochromones (1), furoflavones (2), furoisoflavones (3) and furoxanthones (4). These may be linear or angular.



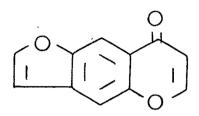
(1)

(3)

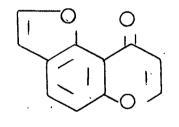


(4)

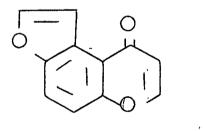
As the present work deals with the synthesis of compounds, which belong to furochromones and furoxanthones, the detailed description is also limited to these two groups only.

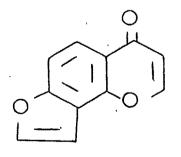

Furochromones

Five isomeric forms of furochromones are found in the literature.



:




. **(B)**

(C)

(D)

(E)

· · ·

Furochromones occuring in nature are of the linear type (A) and are limited in number. Many linear and angular furochromones are obtained synthetically. Khellin, Visnagin, Khellinin, Ammiol, Khellinol and Visammiol are the important naturally occuring furochromones. Khellin is the most important member of this group. Many physiological activities of Khellin are known. It has selective antispasmodic effect upon ureter., gall bladder^{4,5} and bile duct⁶. A bronchodilating action of Khellin has been reported 7,8,9. Khellin has specific relaxing effect on the coronary vessles. and it can be used as potent coronary vasodilator... It was also used in whooping cough. The inhibitory action of Khellin on gastric ulcers human tumours and intestinal activity has also been studied. Synergism was observed between Khellin and barbiturate, since it shortened the interval before the hypnotic effect of the barbiturate appeared. Its antispasmodic effect was reinforced by small dose of papaverine. Khellin combined with barbiturate and papavarine produced a sustained hypotensive action.

Khellol glucosides, khellinin, possesses a persistent and rather selective stimulating action on the heart, producing a more complete systol and diastole, with corresponding increase in cardiac output. It increases the coronary flow, and is not cumulative. Contrary to Khellin and Visnagin, it afforded no protection against poisoning . by histamine aerosol. It is not converted into Khellin in

119

the digestive tract or in the body tissue

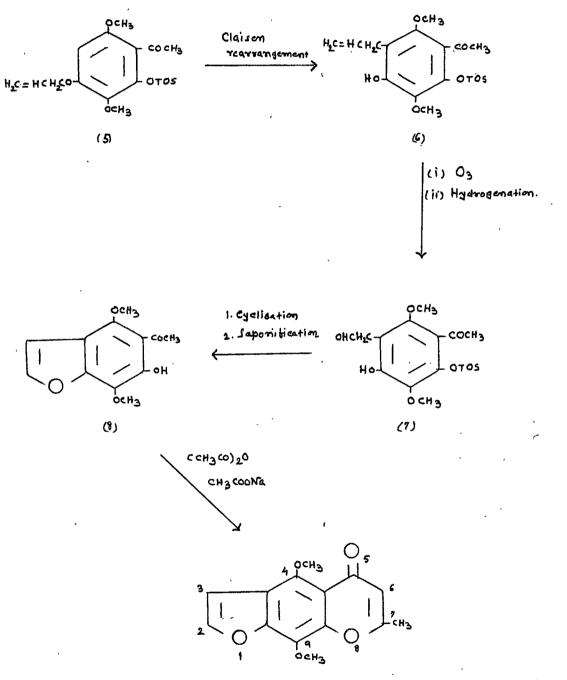
By studying the chemical constitution and the antispasmodic activity of a number of furochromones, Schonberg and co-workers²⁹ formed the generallisation, which applies to the compounds of the Khellin and of the Visnagin type. The loss of the furan ring leads to a 70-90 % decrease in activity. Opening of the y-pyrone ring results in a 75 % loss of activity. Removal of the 8-methoxyl group results in a 30-50 % loss of activity and removal of both 5 and 8-methoxyl groups reduces the activity by 90 %. Simultaneous replacement of both 5- and 8-methoxyl groups by hydroxyl groups reduces the activity by 90 %, but replacement by ethoxyl causes only 25 % loss of activity, whereas higher alkoxyl groups reduces the activity by 80-90 %. Replacement of the 2_methyl group by hydroxyl_methyl group reduces the activity more than 50 % but, on the other hand, replacement of the 2-methyl group by the glucose radical renders the compound almost inactive. Replacement of the 2-methyl group by hydrogen or by ethyl results in 45 % and 25 % loss of activity respectively.

28

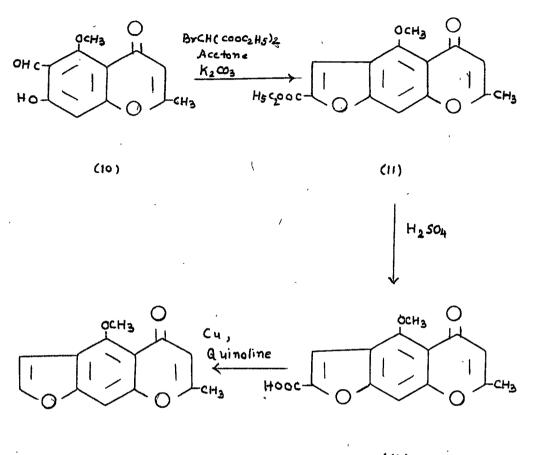
Although among the naturally occuring furochromones, only linear type is known, but many linear as well as angular furochromones are prepared synthetically.

Synthesis of Khellin³⁰⁻³⁵, Visnagin and other naturally occuring furochromones have been achieved by many workers by different routes, however, due to the limited space, a few synthesis of special interest are reviewed here.

120

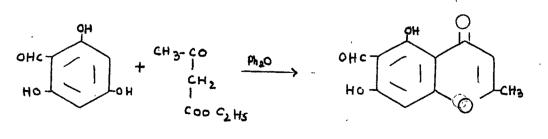

Seshadri and co-workers^{36,37} prepared Khellin (9) as follows :-

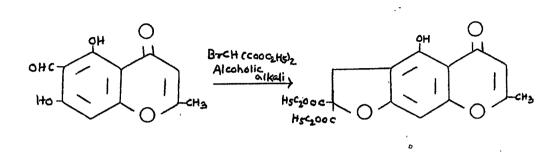
2-Tosyloxy_3,6-dimethoxy_4-hydroxy_5-ally1-res_ acetophenone (6) was obtained when 2-tosyloxy_3,6-dimethoxy-4-allyloxy resacetophenone (5) was subjected to Claisen rearrangement. Ozonolysis followed by catalytic hydrogenation of (6) gave the corresponding acetaldehyde derigative (7), which on cylisation with polyphosphoric acid followed by hydrolysis gave 4,7-dimethoxy_5-acety1-6-hydroxycoumarone (8). Kostanecki_Robinson acetylation of (8) gave Khellin (9).


Fayez and Badami³⁸ synthesised 4_methoxy_7_ methyl_5_oxo_5H_furo (3,2_g) benzopyran or visnagin by the condensation of 2_methyl_5_methoxy_6_formyl_7_hyd moxychromone (10) with diethyl bromomalonate in acetone and potassium carbonate for 30 hr. to give ethyl_4-methoxy_7_methyl_5-oxo_ -5H-furo (3,2_g) benzopyran_2_carboxylate (11). Careful saponification of (11) with sulphuric acid in acetic acid solution gave the corresponding acid (12), which was decarboxylated with copper bromze in quinoline to Visnagin (13).

They also synthesised Visnagin starting with 2-methyl_5,7-dihydroxy_6-formylchromone (14), which/was prepared from phloroglucinaldehyde through condensation with ethyl acetoacetate in diphenyl ether according to Desai, Trivedi and Sethna³⁹. Condensation of (14) with diethyl bromomalonate in ethanolic alkali gave (15), which

\$

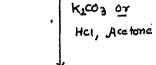

୯)

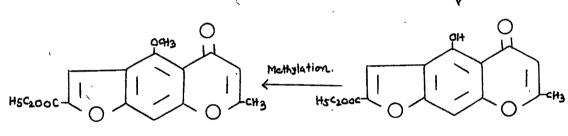

(13)

(12)

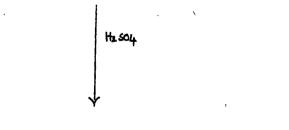
on saponification with potassium carbonate aor hydrochloric acid in acetone solution afforded a mixture comprising (16), which was then methylated to (17). (17) was transformed into visnagin as described before.

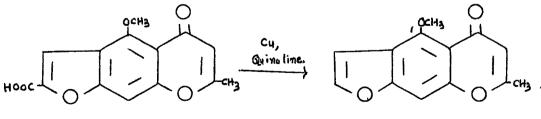
(14)


(14)



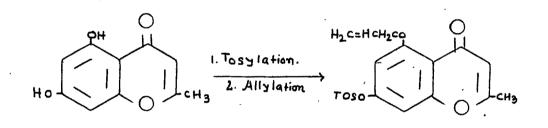
1





(17)

(16)

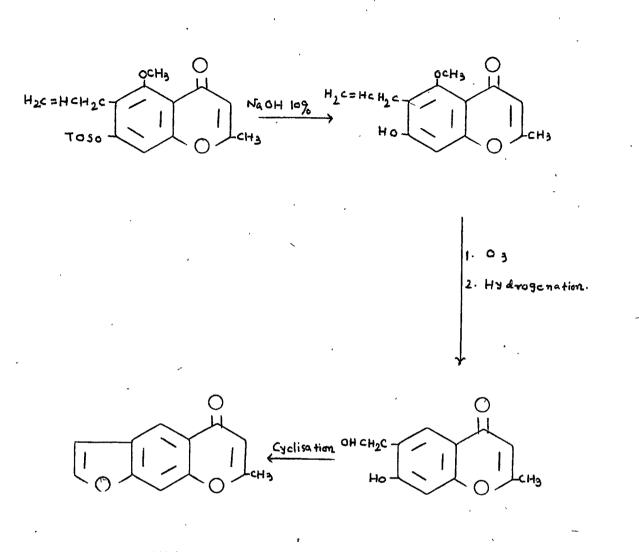


(133

•

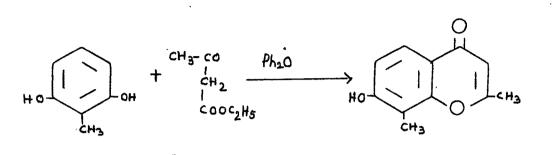
Seshadri and co-workers⁴⁰ had also synthesised Visnagin starting with 5,7-dihydroxy-2-methylchromone (18). They had introduced an allyl group into the 6-position (20) by Claisen migration of 5-allyl Other (19). The initial protection of the 7-hydroxyl group was affected by tosylation, which was then removed just before ozonolysis. The previous methylation of the 5-position was advantageous. This gave Visnagin in good yield.

(18)

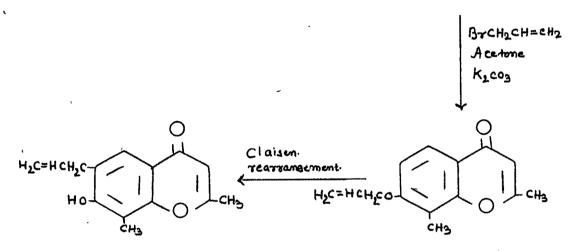


(20)

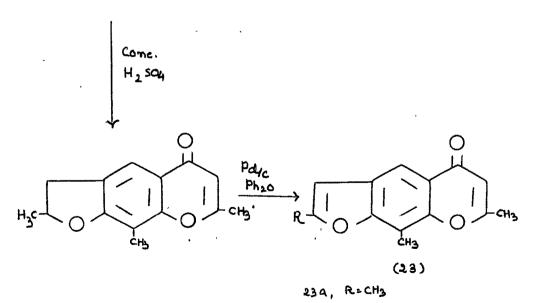
Claisen


1 1

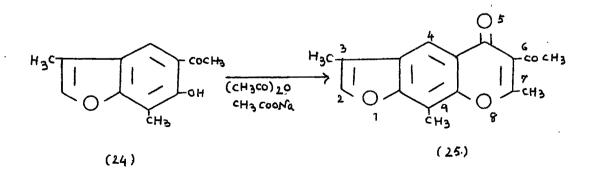
, °



(13)

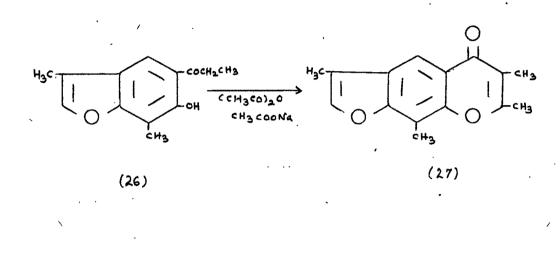

Pardanani and Trivedi⁴¹ have recently synthesised furobenzo-y-pyrones of the above type. Condensation of 2-methylresorcinol with ethyl acetoacetate in boiling diphenyl ether gave 2,8-dimethyl-7-hydroxychromone (21). This on allylation with allyl bromide afforded the allyl ether, which when subjected to Claisen rearrangement gave

(ال ج

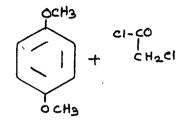


230, R=CH3 23 b, R=H 6-allyl-7-hydroxy_2,8-dimethylchromone (22). Cyclisation of (22) with conc. sulphuric acid gave the dihydrofurobenzopyran derivative, which on dehydrogenateon with palladised charcoal furnished 2,7,9-trimethyl-5-oxo-5H-furo (3,2-g) benzopyran (23).

Ozonolysis of (22) gave an acetaldehydo derivative, which was cyclised with o-phosphoric acid to give 7,9-dimethy1--5-o \hat{x} o-5H-furo (3,2-g) benzopyran (23 b).

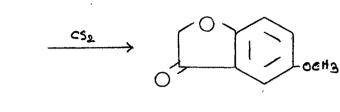

Shaikh and Trivedi⁴² synthesised 6-acety1-3,7,9trimethy1-5-0x0-5H-furo (3,2-g) benzopyran (25) by the following method :-

Kostanecki_Robinson acetylation of 6-hydroxy-5acety1-3,7-dimethyl benzofuran (24) with acetic anhydride and freshly fused sodium acetate gave a product, which was insoluble in cold dilute alkali and did not develop any colouration with alcoholic ferric chloride solution. The compound has been assigned 6-acety1-3,7,9-trimethy1-5-oxo-5H-furo (3,2-g) benzopyran (25) structure on the basis of I.R.Spectra. Attempts to deacetylate this, either by sodium carbonate or conc. sulphuric acid were unsuccessful.

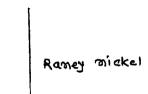


They have also synthesised 3,6,7,9-tetramethy1-5-

oxo-5H-furo (3,2-g) benzopyran (27) by Kostanecki-Robinson acetylation of 6-hydroxy-5-propionyl-3,7-dimethyl benzopyran (26).

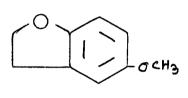


Furochromones of type (B) where oxygen atoms which are involved in heterocyclic ring are para to one another, was synthesised by Ramage and Stead⁴³. Quinol dimethyl ether (28) underwent reaction with chloracetyl chloride to give 2_hydroxy_5_methoxy_phenyl_acyl chloride which was cyclised to 5_methoxycoumaran_3_one (29). Hydrogenation of (29) with Raney nickel gave 5_methoxycoumaran (30), which when treated with acetyl chloride and aluminium chloride gave 5_hydroxy_6_acetylcoumaran (31), which on sublimation under reduced pressure was dehydrogenated to 5_hydroxy_6_ acetylcoumarone (32). Claisen condensation of (32) with ethyl acetate in the presence of sodium, underwent simultaneous cyclisation and afforded 6_methyl_8_oxo_8H_ furo (2,3_g) benzopyran (33).

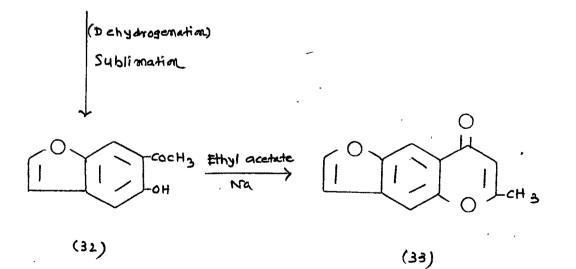



(28)

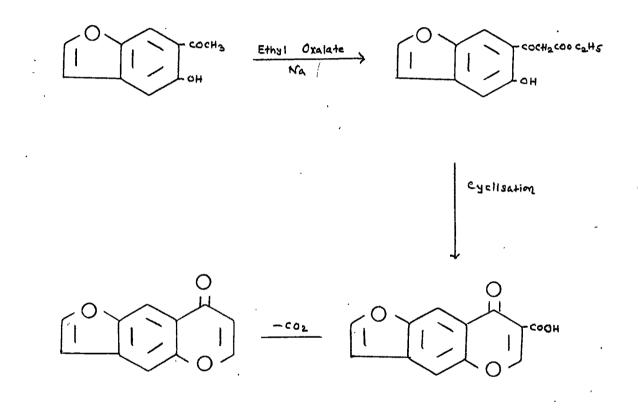
.



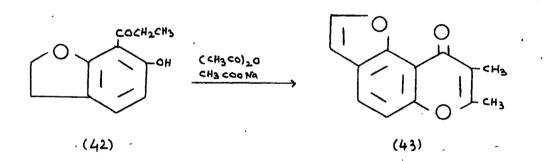
(29)



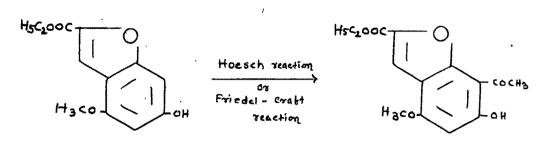
.


(31)

(30)

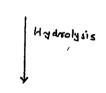

.

Use of ethyloxalate instead of ethyl acetate in Claisen condensation gave the diketo ester (34), which was cyclised to 8-oxo-8H-furo (2,3-g) benzopyran-2-carboxylic acid (35). This acid was smoothly decarboxylated in vacuo to 8-oxo-8H-furo (2,3-g) benzopyran (36).



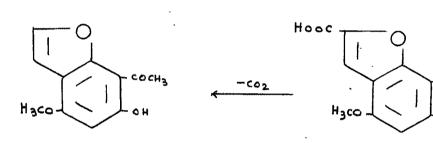
Furochromone of type (C) was prepared by Clarke, Glaser and Robertson⁴⁴. Application of Hoesch reaction with acetonitrile or of Friedel-Craft reaction with acetyl chloride on 2-barboethoxy_4-methoxy_6-hydroxycoumarone (37) where carbethoxy group served to protect the reaction in 2-position, gave 7-acetyl derivative (38), which on hydrolysis and seubsquent decarboxylation afforded 4-methoxy-6-hydroxy--7-acetylcoumarone (39). Claisen condensation of (39) with ethyl acetate gave the diketone (40), which was cyclised to 4-methoxy-7-methyl-9-oxo-9H-furo (2,3-f) benzopyran (41).

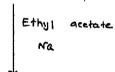
Shaikh and Trivedi⁴² synthesised 7,8-dimethyl-9oxo-9-H-furo (2,3-f) benzopyran (43) from 6-hydroxy-7-propionylbenzofuran (42) by Kostanecki-Robinson acetylation.

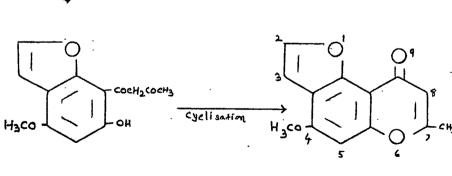


They also synthesised 7-phenyl8-methyl-9-oxo-9Hfuro (2,3-f) benzopyran (45), 3,7,8-trimethyl-9-oxo-9Hfuro (2,3-f) benzopyran (47) from 6-hydroxy-7-propionyl benzofuran (44) and 6-hydroxy-7-propionyl-3-methylbenzofuran (46) by Kostanecki-Robinson acetylation.

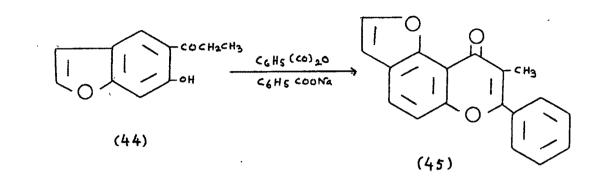
(37)

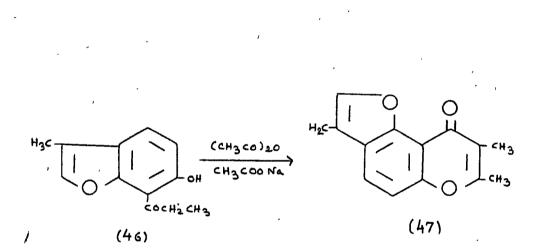

.

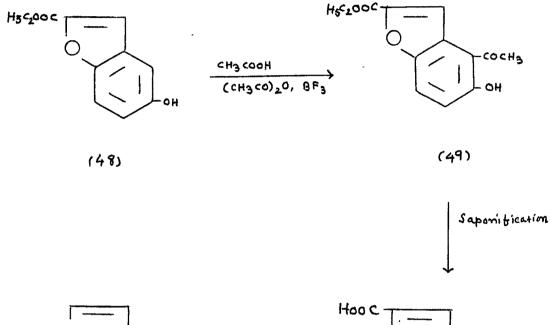

COCH3

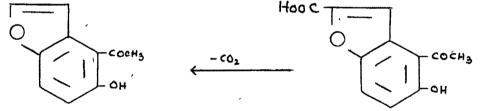

оH

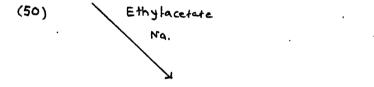
(38)

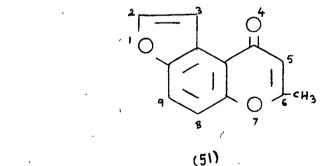




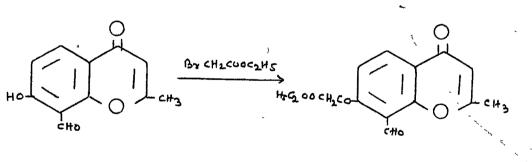


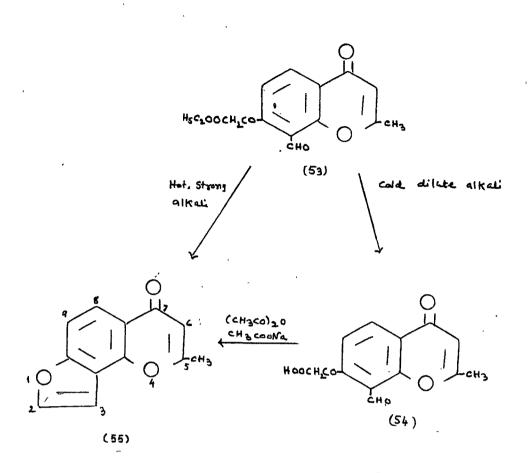




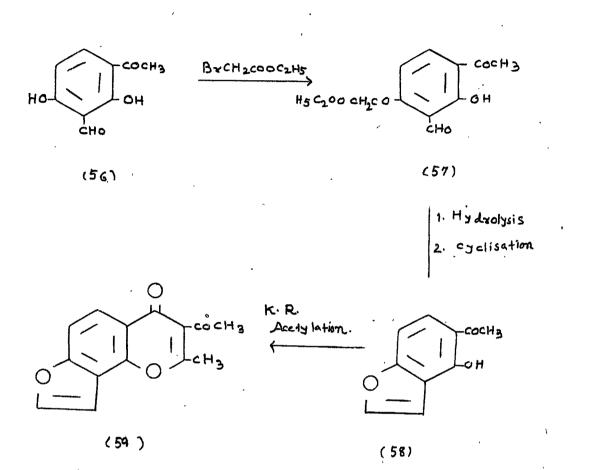


The synthesis of furochromone of type (D) was achieved by Ramehandran and co-workers ⁴⁵. Acetylation of 2_carbethoxy_5_methoxycoumarone (48) in boron trifluoride and acetic acid_acetic anhydride at room temperature for 80 hr. gave 2_carbethoxy_4_acetyl_5_hydroxycoumarone (49), which on saponification followed by decarboxylation gave 5_hydroxy_4_acetyl benzofuran (50). Claisen condensation of (50) with ethyl acetate directly gave 6_methyl_4_oxo_ -4H-furo (3,2-f) benzopyran (51). This represented the first example of the synthesis of furochromone oft type(D).

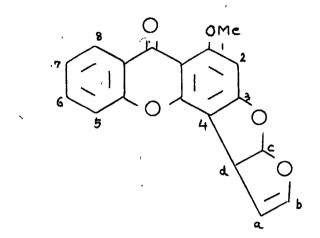



Synthesis of furochromone of type (E) was achieved by many workers.

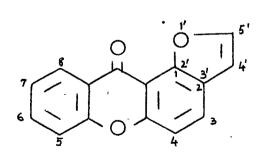
Rao, Subramanyam and Venkateswarlu⁴⁶ has synthesised this type of furochromone by constructing a furan ring on a suitably substituted chromone. 8-Formy1-7hydroxy-2-methylchromone (52) was condensed with ethyl bromo acetate, yielding ethyl-8-formy1-2-methyl-7chromonyloxy acetate (53), which on hydrolysis with cold dilute alkali gave the corresponding carboxylic acid (54), while hydrolysis using strong hot alkali gave the corresponding furochromone (55), decarboxylation and cyclisation taking place simultaneously during the course of the hydrolysis. Furochromone (55) could also be produced by cyclising the acid (54) using acetic anhydride and sodium acetate.


(52)

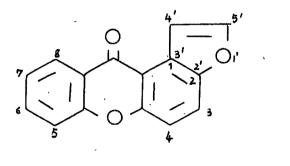
(53)


The same authors have synthesised similar type of furochromone starting with 2,4-dihydroxy_3-formyl_res_ acetophenone (56), which was condensed with ethyl bromoacetate to give 4-0-carbethoxy_methyl_3-formyl_2-hydroxy acetophenone (57). Hydrolysis followed by cyclisation of (57) gave 5-acetyl_4-hydroxy benzofuran (58), which on Kostanecki_Robinson acetylation gave 5-methyl_6-acetyl_7oxo_7H_furo (2,3-h) benzopyran (59). Deacetylation of this was a failure.

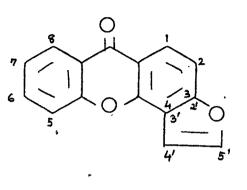
£°

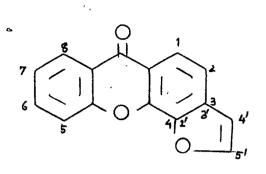

Furoxanthones

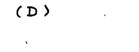
Xanthones are naturally occuring compounds found in fungi and plants. A condensed furan nucleus occur in a number of related natural products, viz., furocoumarins, furochromones, furoflavones, etc. Furoxanthones are the condensed nucleus of furan with xanthones. Sterigmatocystin (3a, 12a_dihydro_8_hydroxy_6_methoxy_7H_furo (3',2'_4,5) furo (2,3_c) xanthen_7_one) (60) is a naturally occuring furo_ xanthone. Sterigmatocystin has no significant tuberculostatic or amoebicidal activity.

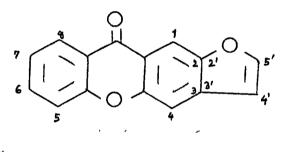


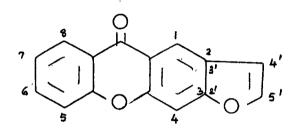
. (60)


The parent pyrans, the furoxanthenes, are not known to occur in nature. Six isomeric forms of furoxanthones are found in literature.


- ((A)* .

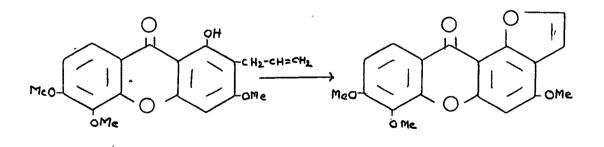



(8)



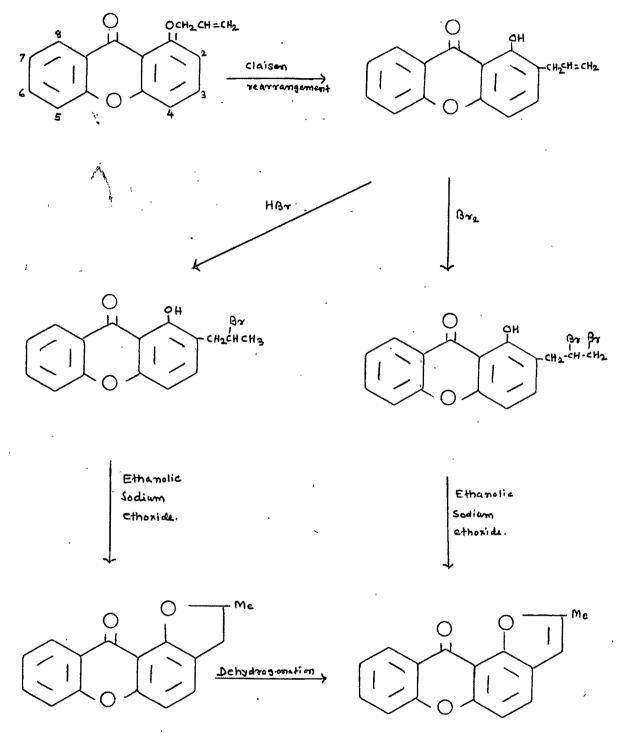
(F)

(E)

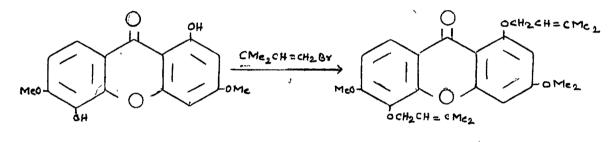

Furoxanthones of type (A) was synthesised by
F. Scheinmann and H. Suschitzky⁵⁵, by the following methods.
1_Allyloxyxanthone (61) on Claisen rearrangement
by refluxing in dimethylaniline afforded 2_allyl-1_hydroxy_
xanthone (62). Addition of bromine to 2_allyl_1_hydroxy_
xanthone gave the dibromo adduct (63), from which two
molecules of hydrogen bromide were eliminated by treatment
with ethanolic sodium ethoxide to give a cyclic ether. By

analygy with the results of Adams and Rindfusz⁵⁶, who cyclised o-allylphenols by the same method, they æsigned the furano structure (64) to above cyclic ether.

2_Allyl_l_hydroxyxanthone (62) was made to react with hydrogen bromide to give 2_B_bromopropyl_l_hydroxy_ xanthone (65). Cyclisation of this bromo compound by refluxing in ethanolic sodium ethoxide gave, a furoxanthome 5'_methyl_4 ,5'_dihydrofuro (2',3'-1,2) xanthone (66) almost quantitatively. The attempts to convert the furoxanthone (66) by dehydrogenation into (64) failed.

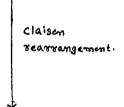

Seshadri and co-workers, new method⁵⁷ on synthesing benzopyrono furans has recently been adopted by Scheinmann and co-workers^{58,59}, for the preparation of the furoxanthone.

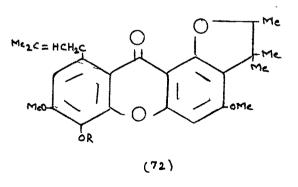
Ozonolysis of the allyl derivative (67), followed by cyclisation with polyphosphoric acid gave 3,5,6-trimethoxyfuro (2',3'-1,2) xanthone (68).

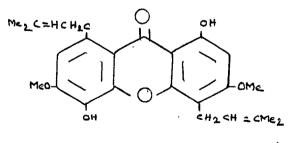


(68)

(67)




The reaction of 1,5-dihydroxy-3,6-dimethoxyxanthone (69) with 3,3-dimethyl allyl bromide gave the ether (70) which rearranged in dimethyl aniline to two xanthones (71 and 72a). Migration in the other ring occurs to yield the ortho product, 5-hydroxy-2,6-dimethoxy-8-(3',3'-dimethyl-allyl)-4',5'-dihydro-4',4',5'-trimethyl furo (2',3'-1,2) xanthone (72), and in addition the para isomer (71). Methylation of (72a) gave the trimethyl ether $(72b)^{59}$.



(7!)

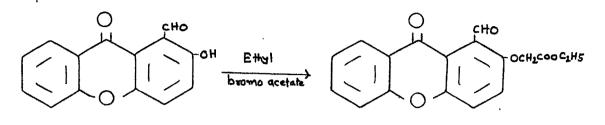
143

Furo xanthones of type (B) was synthesised by Davies and his co_workers •

This synthesis employs one of the typical methods for the preparation of benzofuran derivatives, viz., a mixed Claisen type condensation or internal aldol condensation using the appropriately substituted aldehyde or ketone and bromoacetic or bromomalonic ester.

2-Hydroxyxanthone was readily formylated by a Duff reaction to obtain 1-formyl-2-hydroxymanthone (73). Cyclisation of 1-formyl-2-xanthyloxy acetate (74)(obtained by condensation of 1-formyl-2-hydroxyxanthone and ethyl bromo acetate) in ethanol with sodium ethoxide at room temperature gave 5'-carbethoxy-furo (3',2'-1,2) xanthone (75) in good yield. Hydrolysis of this ester followed by decarboxylation, gave the parent angular furoxanthone (76), which was also obtained by ring closure of 1-formyl-2-xanthyloxy acetic acid accompanied by decarboxylation.

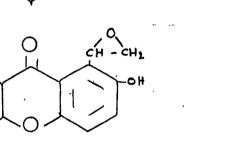
F. Lamb and H. Suschitzky ⁶¹ have prepared 4'_methylfuro (3',2'_1,2) xanthone (78) by the following :_ method :_


1-Formy1-2-hydroxyxanthone (73) was made to react with diazomethane yielding 2-hydroxy_1_xanthylethylene oxide (77), which on treatment with 2-N_sulphuric acid gave the furoxanthone (78).

.

,

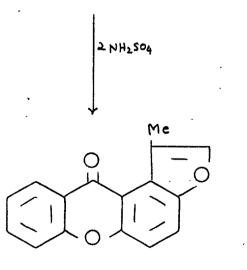
 \cap


COOCLHS

(73)

.

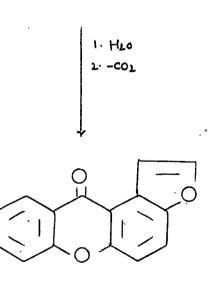
•


Ο

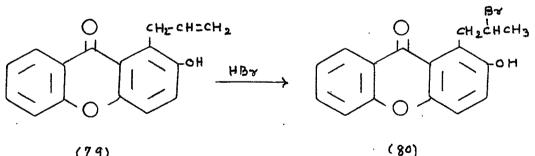
(74)

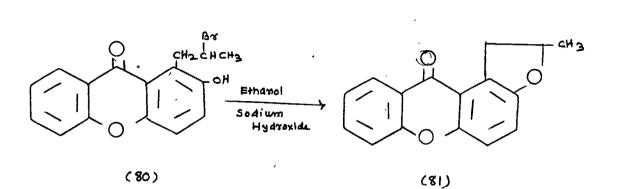
Sodium

cthoxida


l

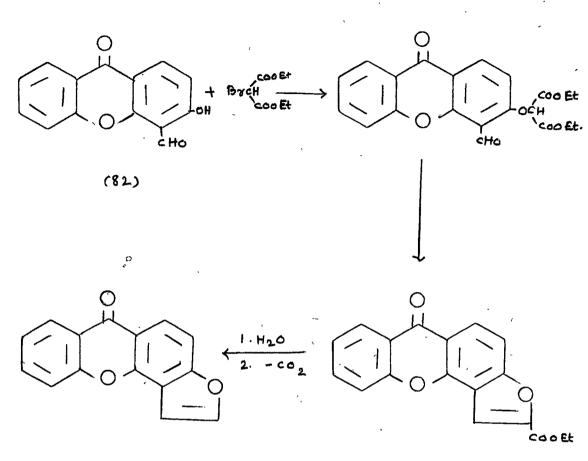
σ


۰ –


(76)

On the other hand, the corresponding ketone, viz., 2-acetyl_l_hydroxyxanthone, which can also be submitted to a similar internal condensation leading to the formation of a furan skeleton, can be more readily prepared and in better yield from the hydroxyxanthones by means of the Friedel_Crafts_Fries reactions. However, while aldehydo ester give rise to furo compounds, unsubstituted in the furan ring. The use of substituted ketones for such internal Claisen condensation results in the formation of furo compounds carrying a methyl substituent in the B-position.

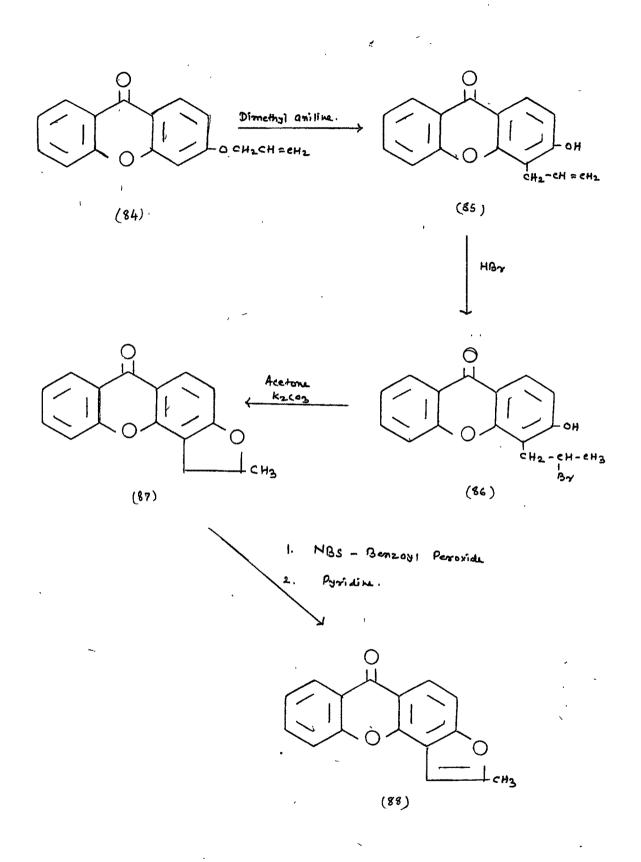
Cyclisation of 1_B_bromopropy1_2_hydroxyxanthone (80), obtained by treatment of 1_ally1_2_hydroxyxanthone (79) with hydrogen bromide in ethanol with sodium hydroxide yields 5'_methyl_4',5'_dihydro furo (3',2'-1,2) xanthone(81).


(79)

Furoxanthone of type (C) was synthesised by G.S. Puranik and S. Rajopal⁶². 4-Formy1-3-hydroxyxanthone (82) When condensed with bromomalonic ester, which effected simultaneous esterification and internal aldol condensation followed by hydrolysis and decarboxylation of 5'-carbethoxy derivative formed, yielded furo (3',2'-4,3) xanthone (83).

The same authors 63 have also synthesised 5'methyl and 5',6-dimethyl furo (3',2'-4,5) xanthone.

3-Allyloxy xanthone (84) on Claisen rearrangement in dimethylaniline afforded 4-allyl-3-hydroxyxanthone (85). Two methods for the furan ring closure of 4-allyl-3-hydroxyxanthones were adopted. The first based on Scheinmann and Suschitzky's work⁵⁵, which gives dihydro furo compounds, by the following route. 4-Allyl-3-hydroxyxanthone was treated with hydrogen bromide gas in the presence of trages

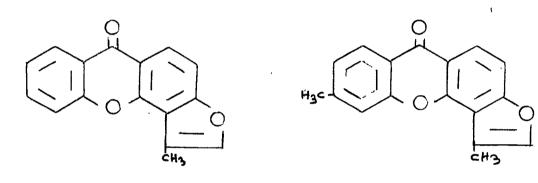

(83)

of diphenylamine gave 4_B_bromopropyl_3_hydroxyxanthone (86), which on treatment with acetone and potassium carbonate gave $4^{,5^{,}}_{,5^{,}}_{,1^{,}}}_{,1^{,}}_{,1^{,}}_{,1^{,}}_{,1^{,}}_{,1^{,}}}_{,1^{,}}_{,1^{,}}_{,1^{,}}_{,1^{,}}_{,1^{,}}}_{,1^{,}}_{,1^{,}}_{,1^{,}}}_{,1^{,}}_{,1^{,}}}_{,1^{,}}_{,1^{,}}}_{,1^{,}}_{,1^{,}}}_{,1^{,}}_{,1^{,}}}_{,1^{,}}_{,1^{,}}}_$

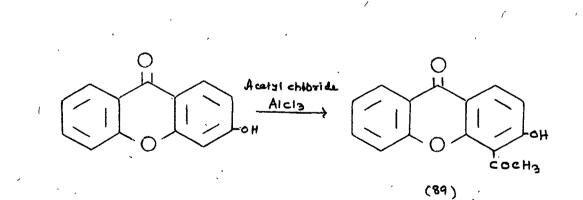
The second route is an adaption of Adams and Rindfusz⁵⁶ method, involving addition of bromide to 3_acetoxy_

149

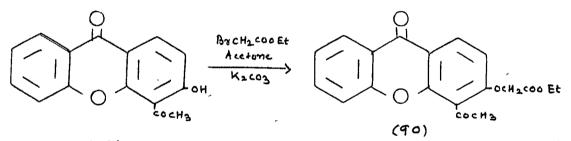
\$

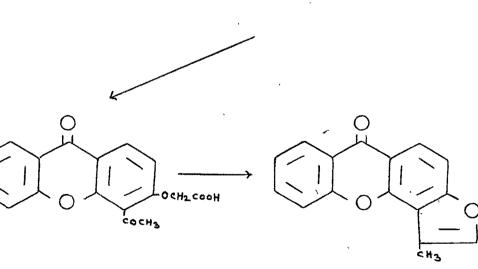


.

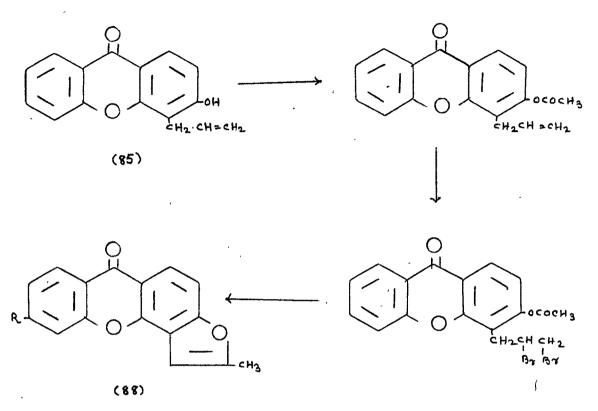

-4-allyl derivatives followed by cyclisation and dehydro bromination by reaction with alcoholic potassium hydroxide.

3-Allyloxy-6-methyl xanthone, by the same series of reaction gave 5',6-dimethyl furo (3',2'-4,3) xanthone (88b).


They⁶⁴ also synthesised 4'_methyl_furo (3;2'_4,3) xanthone (92) and 4',6_dimethyl_furo (3',2'_4,3) xanthone (95) starting from 3_hydroxy and 3_hydroxy_6-methylxanthone by the following route :-

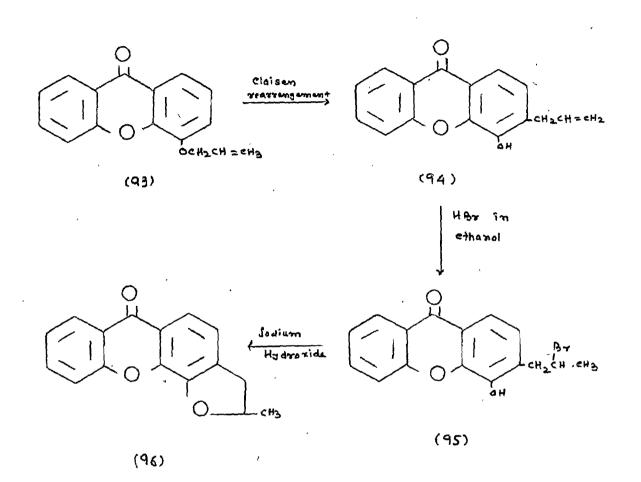

(92)

3-Hydroxyxanthone on treatment with acetyl chloride in the presence of aluminium chloride yielded 4-acetyl_3-hydroxyxanthone (89). 4-Acetyl_3-hydroxyxanthone (90) condensed with bromo acetic ester in the presence of potassium carbonate and acetone to yield Ethyl_4-acetyl_9oxo_3-xanthyloxy acetate (90), which on hydrolysis with aqueous potassium hydroxide gave 4-acetyl_9_oxo_3-xanthyloxy acetic acid (91). The internal Claisen condensation of the acid (91) with sodium acetate and acetic anhydride yielded 4'_methyl_furo (3',2'_4,3) xanthone (92).


(89)

(91)

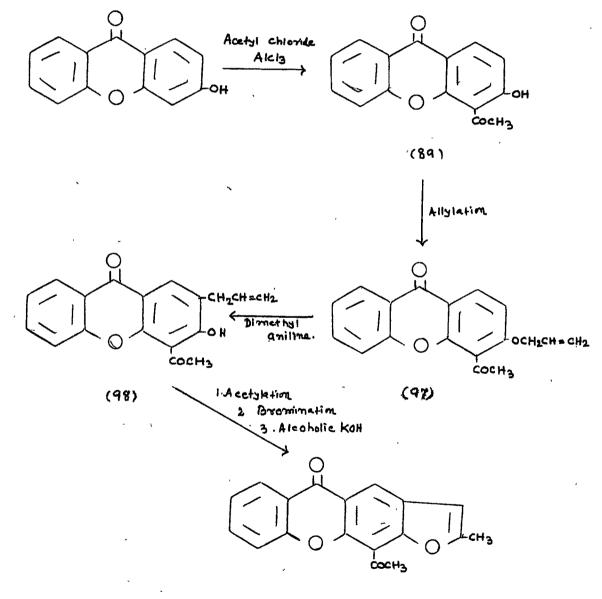
152



88 a, R=H, 886, R=CH3

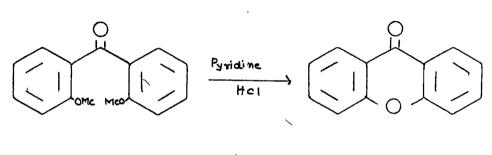
3_Hydroxy-6_methylxanthone on similar series of reactions gave 4',6_dimethylfuro (3',2'_4,3) xanthone.

Furoxanthone of type (D) was synthesised by A. Mustafa and his co-workers 65 .


4_Allyloxy_xanthone (93) on Claisen rearrangement gave 2_allyl_4_hydroxyxanthone (94). Cyclisation of 3_B_ bromopropyl_4_hydroxyxanthone (95), obtained by treatment of 3_allyl_4_hydroxyxanthone (94) with hydrogen bromide in ethanol with sodium hydroxide, yields 4',5'_dihydro_5'_ methyl_furo (2',3'_4,3) xanthone (96).

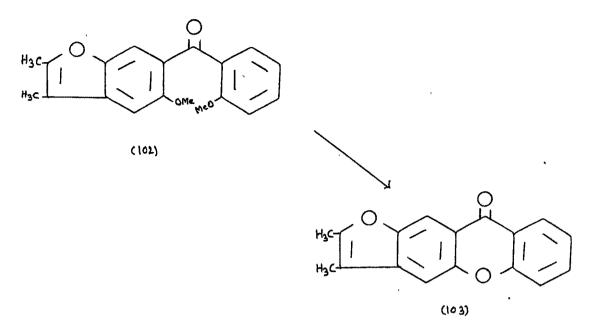
Linear furoxanthors of type (E) was synthesised by Agasimudin and S. Rajopal 66.

4_Acety1_3_hydroxyxanthone (89) obtained by treatment of 3_hydroxyxanthone with acety1 chloride in the presence of aluminuum chloride have been allylated to 4_acety1_3_allyloxyxanthone (97). 4_Acety1_3_allyloxyxanthone on Claisen rearrangement in dimethy1 aniline gave 4_acety1_2_allyl_3hydroxyxanthone, (98), which after acety1ation and bromination, treated with potassium hydroxide in ethanol to bring about simultaneous dehalogenation and cyclisation with the formation of $4-acetyl_5$ '_methyl_furo (4',5'_2,3) xanthone (99).


4-Acetyl_3_hydroxy_6-methylxanthone on similar series of reactions gave 4-acetyl_5-7-dimethyl_furo (4,5-2,3) xanthone.

Linear furo xanthone of type (F) was prepared recently by Royer Rene and his co-workers 67 .

They observed that 2,2'-dimethoxy benzophenone derivative (100) when heated with pyridine_hydrochloric acid for 2+_48 hr., it gave xanthones (101). The weight ratio of pyridine_hydrochloric acid to (100) is **five**.



(100)

(101)

By using this method, furo (2',3'-2,3) xanthone derivative was synthesised. 2,3-Dimethyl-5-methoxy-6--(o-methoxybenzoyl) benzufuran (102) on treatment with pyridinehydrochloric acid gave 4',5'-dimethyl-furo (2',3'-2,3) xanthone (103).

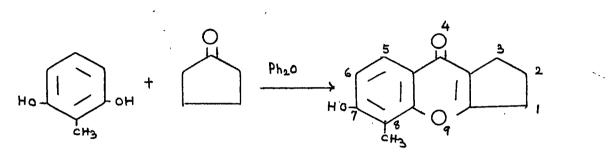
Substitution in benzoyl ring of (102) gave the furoxanthone (103) with the substitution in the benzene nucleus.

PRESENT WORK

In recent years furobenzo-y-pyrones have received considerably attention s they not only occur in nature but also possess therapeutic properties. It was, therefore, though of interest to synthesise Khellin and Visnagin type of compounds which are likely to be physiologically active and in an attempt to prepare physiologically active molecules of simple structure, analogus to biologically active molecules Khellin, the synthesis of furo xanthones has been also achieved. The synthesis of furochromones and furoxanthones is described here. The following furochromones were synthesised

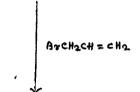
1. 9-Methyl-1,2,3,4-tetrahydrocyclopenta (b) furo (3,2-g)
benzopyran _4-one (108).

- 2. 7,9_Dimethy1_1,2,3,4_tetrahydrocyclopenta (b) furo (3,2-g) benzopyran _4_one (110).
- 3. 8-Methyl-1,2,3,4,8,9-hexahydrocyclopenta (b) furo (2,3-h) benzopyran-4-one (114).
- 4. 9-Methyl-1,2,3,4-tetrahydrocyclopenta (b) furo (2,3-h) benzopyran -4-one (119).
- The following furo xanthones were synthesised.
- 1. 5-Methyl-1,2,3,4-tetrahydro-furo (2',3'-6,7) xanthone (124).
- 2. 5',5-Dimethyl-1,2,3,4-tetrahydro furo (2',3'-6,7) xanthone (127).
- 3. 5',4-Dimethyl-furo (3',2'-2,3) xanthone (129).
- 4. 1,2,3,4_Tetrahydro_furo (3',2'-5,6) xanthone (133).
- 5. 5'_Methyl_fure (2',3'-3,4) xanthone (135).
- 6. 4'_Methyl_furo (2',3'-3,4) xanthone (141).

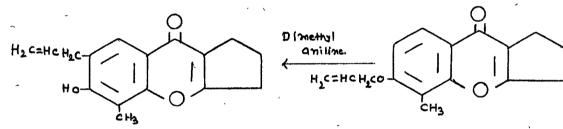

Synthesis of 9-methyl-1,2,3,4-tetrahydrocyclopenta (b) furo (3,2-g) benzopyran -4-one (108) :

Condensation of 2_methyl_resorcinol with ethyl cyclopentanone 2_carboxylate in the presence of diphenyl ether according to Desai, Trivedi and Sethna³⁸ gave 7_hydroxy_8_methyl_1,2,3,4_tetrahydrocyclopenta (b) benzo_ pyran_4_one (104). This on allylation with allyl bromide in dry acetone and anhydrous potassium carbonate afforded 7_allyloxy_8_methyl_1,2,3,4_tetrahydrocyclopenta (b) benzo_

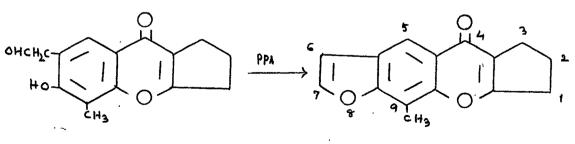
pyran_4_one (105), which was subjected to Claisen rearrangement by refluxing it with dimethyl aniline to give 7-hydroxy-6ally1_8_methy1_1,2,3,4_tetrahydrocyclopenta (b) benzopyran_4_ one (106). The structure of (106) was assigned on the basis of I.R. spectrum (fig. 1), which showed a sharp band at 1630 cm. (y-pyronyl >C=0 group) and a broad band at 3300 cm ... (aromatic hydroxy group). 7-Hydroxy-6-ally1-8methy1-1,2,3,4-tetrahydrocyclopenta (b) benzopyran-4-one 68 (106) on treatment with osmium tetroxide, potassium periodate, in ethyl acetate_water medium afforded, 7-hydroxy_8_methyl-6acettaldehydo_1,2,3,4-tetrahydrocyclopenta (b) benzopyran_4one (107). the I.R. spectrum of which showed a broad band at 3180 cm .-- (aromatic hydroxyl group) a sharp band at 1630 cm .-(Fra.2)(y-pyronyl >C=0 group) and at 1700 cm... (aldehyde, >C=0 group). Cyclisation of (107) with polyphosphoric acid gave 9-methyl-1,2,3,4-tetrahydrocyclopenta (b) furo (3,2-g) benzopyran-4one (108). the I.R. spectrum of which showed a band at 875 cm ... (furan ring) and at 1615 cm ... (y-pyronyl > C=0 group). (Fig. 3) Synthesis of 7,9-dimethy1-1,2,3,4-tetrahydrocyclopenta (b)

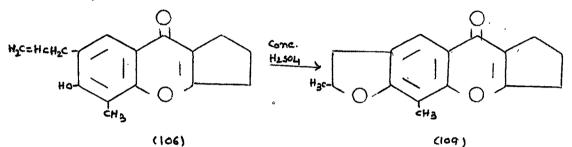

furo (3,2_g) benzopyran_4_onel(110): :

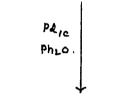
Cyclisation of (106) by trituration with conc. sulphuric acid according to Shaikh and Triyedi⁶⁹ afforded 7,9-dimethyl-1,2,3,4,6,7-hexahydrocyclopenta (b) benzopyran--4-one (109), the I.R. spectrum of which showed a sharp (Fig. 4) band at 1630 cm... (y-pyronyl >C=0 group). Dehydrogenation of (109) with palladised charcoal in boiling diphenyl ether

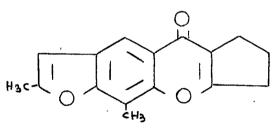


(104)









furnished 7,9-dimethyl-1,2,3,4-tetrahydrocyclopenta (b) furo (3,2-g) benzopyran_4-one (110), the I. R. spectrum of which showed a band at 835 cm... (furan), 1630 cm... (y-pyronyl > C=0 group). (Fig. 5)

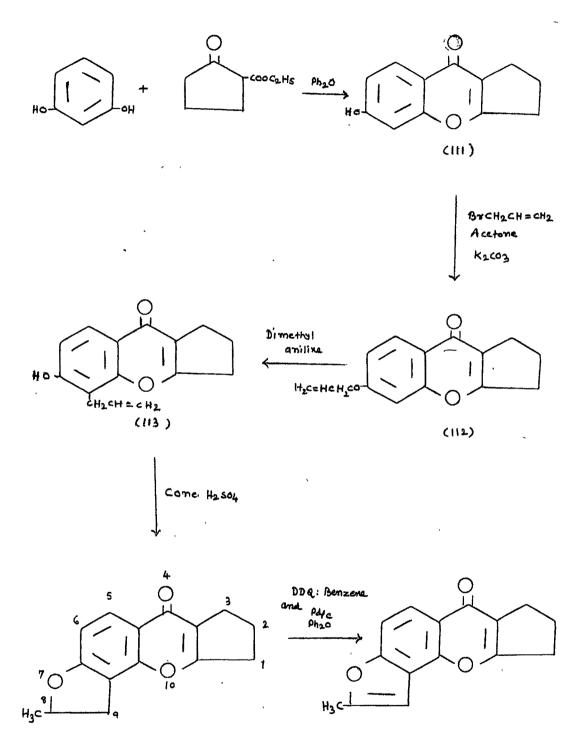
(110)

Synthesis of 8_methyl_1,2,3,4,8,9_hexahydrocyclopenta (b) furo (2,3-h) benzopyran_4-one (114) :

Condensation of resorcinol with ethyl cyclopentanone -2_carboxylate in the presence of diphenyl ether according to Desai, Trivedi and Sethna³⁹ gave 7-hydroxy-1,2,3,4-tetrahydrocyclopenta (b) benzopyran-4-one (111). This on allylation with allyl bromide in dry acetone and anhydrous potassium carbonate afforded 7-allyloxy-1,2,3,4-tetrahydrocyclopenta (b) benzopyran-4-one, which was subjected to Claisen rearrangement by refluxing it with dimethyl miline to give 7-hydroxy-8-allyl-1,2,3,4-tetrahydrocyclopenta (b) benzopyran-4-one (113). Two ortho position are free for Claisen migration, the migration took place at 8-position, was supported by the NMR spectrum of (113). The NMR of (113) showed the following signals :-

Chemical shift (d) ppm.	Coupling constant J (Cps)	Signals	Assignments
يوي الله ون نيو منه من خو غلي مار الله عن الله	yare dan dan CAR Can yan yan dan gaar	ينهي ملي خلير ^{منين} مير عنه الله الله علي من الله الله	نے نکا ہے اور
2.68	-	Doublet	2H, CH2 group of allyl
	ł	v	group at position 7.
-			Ar_o_ <u>CH</u> 2CH=CH2
6.1	-	Multiplet	1H, 1H of allyl group at
	,		position 7.
		,	Ar_o_CH2CH=CH2
5.22		Doublet	2H, =CH ₂ group of ally1
			group at position 7.
			Ar_o_CH2CH=CH2
3.3-4.0	-	Multiplet	6H, protons of cyclopentane.
7.42	6H z	Doublet	Aromatic proton at 6-position.
8.3	6Hz	Doublet,	Aromatic proton at 5-position.

161


- -

The migrated compound (113) was insoluble in ethyl acetate and tetrahydrofuran hence the reaction with osmium tetroxide was not possible.

Cyclisation of(113) by trituration with conc. sulphuric acid according to Shaikh and Trivedi⁶⁹ afforded 8-methyl-1,2,3,4,8,9-hexahydrocyclopenta (b) furo (2,3-h) benzopyran_4-one (114). Attempts to dehydrogenate (114) either with palladised charcoal in diphenyl ether or DDQ in benzene met with failure.

As the above method to build up the furan ring om 7-hydroxy-1,2,3,4-tetrahydrocyclopenta (b) benzopyran_4-one did not succeed, the following route was tried with success. Synthesis of 9-methyl-1,2,3,4-tetrahydrocyclopenta (b) benzopyran_4-one (119) :

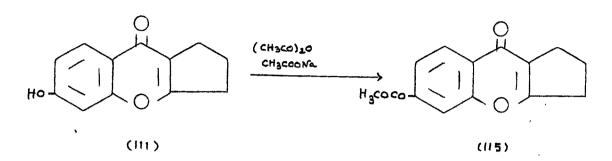
7-Hydroxy-1,2,3,4-tetrahydrocyclopenta (b) benzopyran_4-one (111), on acetylation with acetic anhydride and fused sodium acetate, gave 7-acetoxy-1,2,3,4-tetrahydrocyclopenta (b) benzopyran_4-one (115). Fries migration of 7-acetoxy_1,2,3,4-tetrahydrócyclopenta (b) benzopyran_4-one (115) afforded 7-hydroxy_8-acetyl_1,2,3,4-tetrahydrocyclopenta (b) benzopyran_4-one (116). Two ortho position are free for migration. Migration took place at 8-position. The structure of (116) was supported by its NMR spectrum (Fig. 7) which showed the following signals :-

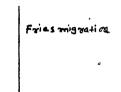
ı

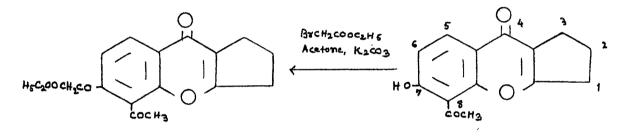
(114)

163

.

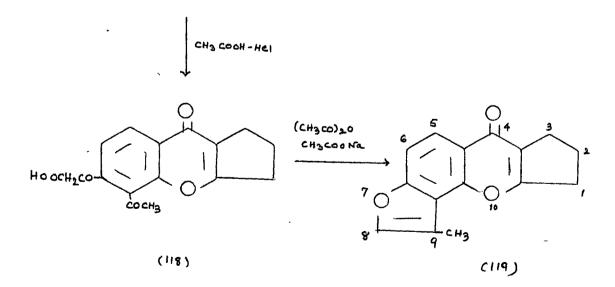

Chemical Shift (d) ppm.	Coupling constant J (Cps.).	Signals	Assignments.
2.8	-	Singlet	3H, -COCH ₃ group at
			position 8.
7.0	9Hz .	Doublet	1H, Aromatic proton
			at position 6.
8133	9Hz	Doublet	1H, Aromatic proton
			at position 5.
2.2-3.2	-	Multiplet	6H, proton of cyclo-
			pentane ring.

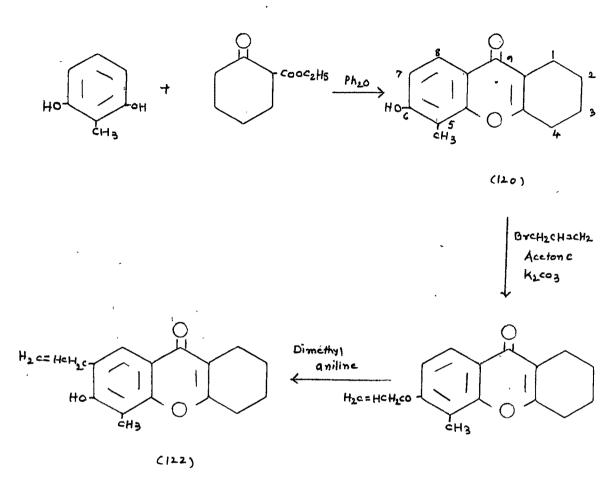

7-Hydroxy-8-acetyl-1,2,3,4-tetrahydrocyclopenta (b) benzopyran-4-one (116) condensed with ethyl bromo acetate in the presence of anhydrous potassium carbonate and dry acetone gave ethyl-8-acetyl-4-oxo-1,2,3,4-tetrahydrocyclopenta (b) benzopyranyloxy-7-acetate (117), which was hydrolysied by refluxing it with acetic acid-hydrochloric acid (1 : 1) to give corresponding carboxylic acid, 8-acetyl--4-oxo-1,2,3,4-tetrahydrocyclopenta (b) benzopyranyloxy-7acetic acid (118). (118) was cyclised to 9-methyl-1,2,3,4tetrahydrocyclopenta (b) furo (2,3-h) benzopyran-4-one (119), when refluxed with acetic anhydride and sodium acetate. Synthesis of 5-methyl-1,2,3,4-tetrahydro furo (2',3'-6,7) Xanthone (124) :

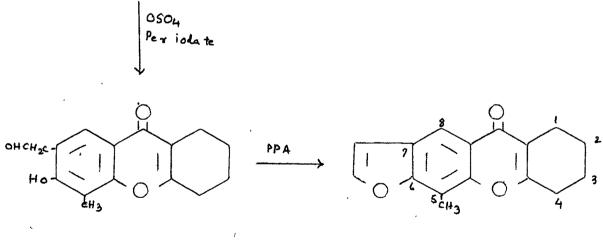

Condensation of 2_methyl_resorcinol with ethyl cyclopexanone_2_carboxylate in the presence of diphenyl ether

165

,



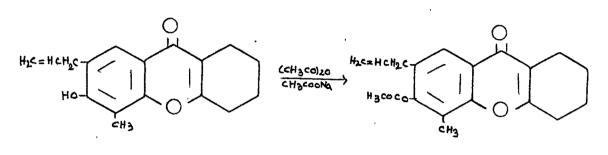




according to Desai, Trivedi and Sethna 39, gave 6_hydroxy_ -5-methy1-1,2,3,4-tetrahydroxanthone (120). This on allylation with allyl bromide in dry acetone and anhydrous potassium carbonate afforded 6-allyloxy-5-methyl-1,2,3,4-tetrahydroxanthone (121), which was subjected to Claisen rearrangement by refluxing it with dimethyl aniline to give 6-hydroxy_7-ally1_5-methy1_1,2,3,4-tetrahydro xanthone (122). 6=Hydroxy_7_allyl_5_methyl_1,2,3,4_tetrahydroxanthone (122) on treatment with osmium tetroxide, potassium per iodate in ethyl acetate _ water medium afforded 6-hydroxy_5-methyl-7acetaldehydo_1,2,3,4_tetrahydroxanthone (123), cyclisation of which with polyphosphoric acid gave 5_methyl_1,2,3,4_ tetrahydro_furo (2,3,6,7) xanthone (124), the I.R. spectrum of which showed a sharp band at 870 cm. (furan), 1640 cm. (y-pyronyl >C=0 group). (F3.8) Synthesis of 5°, 5-dimethyl-1, 2, 3, 4-tetrahydro-furo (2°, 3'-6,7) xanthone (127) :

5',5-Dimethyl-1,2,3,4-tetrahydro furo (2',3'-6,7) xanthone (124) was prepared according to the method developed by Kaufmann⁷⁰. 6-Hydroxy-7-allyl-5-methyl-1,2,3,4-tetrahydroxanthone (122) on acetylation with acetic anhydride and fused sodium acetate, gave 7-allyl-5-methyl-6-acetoxy-1,2,3,4tetrahydroxanthone (125), which on bromination with bromine in acetic acid afforded 7-(2',3'-dibromopropyl)-5-methyl-6acetoxy-1,2,3,4-tetrahydrofanthone (126). (126) when refluxed

1

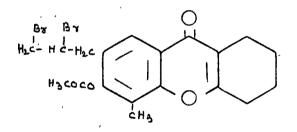


.

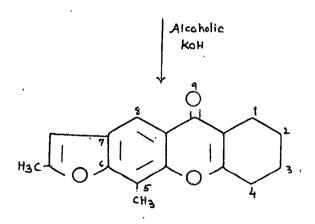
1

(124)

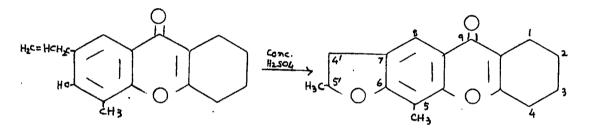

with alcoholic potassium hydroxide furnished 5',5_dimethyl_ 1,2,3,4_tetrahydro furo (2',3'-6,7) xanthone (127).



(122)

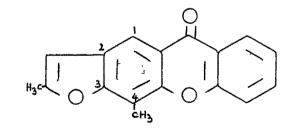

٠

(125)


(126)

(127)

Synthesis of 5, 4_dimethyl_furo (3', 222, 3) xanthone (129) :

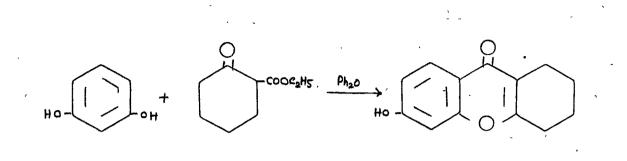

6-Hydroxy-7-allyl-5-methyl-1,2,3,4-tetrahydroxanthone (122) was triturated with conc. sulphuric acid to give 5',5-dimethyl-1,2,3,4,4',5'-hexahydro furo (2',3'-6,7) xanthone (128), which was dehydrogenated with palladised charcoal in boiling diphenyl ether to 5',4-dimethyl-furo (3',2'-2,3) xanthone (129).

(122)

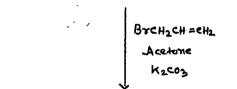
(128)

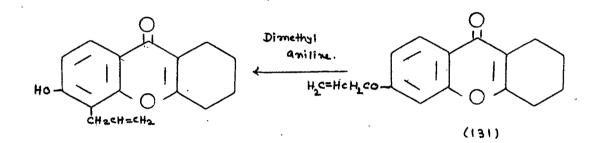
(129)

Synthesis of 1,2,3,4-tetrahydro furo (3',2'-5,6) xanthone (133) :


Resorcinol was condensed with ethyl cyclo hexanone. -2-carboxylate in diphenyl ether to give 6-hydroxy-1,2,3,4tetrahydroxanthone (130), which was previously prepared by Charles, Mentzer and his co-workers⁷¹. (130) on allylation with allyl bromide in the presence of anhydrous potassium carbonate and dry acetone afforded 6-allyloxy-1,2,3,4-tetrahydroxanthone (131), which was subjected to Claisen rearrangement by refluxing it with dimethyl aniline to give 6-hydroxy-5-allyl-1,2,3,4-tetrahydroxanthone (132). (132) on treatment with osmium tetro2ide, potassium periodate in ethyl acetate_water medium afforded 6-hyd moxy-5-acetaldehydo-1,2,3,4-tetrahydroxanthone, which was directly cyclised with polyphosphoric acid to give 1,2,3,4-tetrahydro furo (3',2'-5,6) xanthone (133).

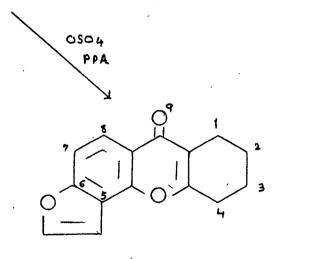
Synthesis of 5'_methyl_furo (2',3'-3,4) xanthone (135)


Cyclisation of 6-hydroxy-5-allyl-1,2,3,4-tetrahydroxanthone (132) by trituration with cone. sulphuric acid afforded 5'-methyl-1,2,3,4,4',5'-hexahydro (3',2'-5,6) xanthone (134), which was dehydrogenated with palladised charcoal in boiling diphenyl ether to 5'-methyl furo (2',3'-3,4) xanthone (135).


Synthesis of 4'_methyl_furo (2',3'-3,4) xanthone (141) :

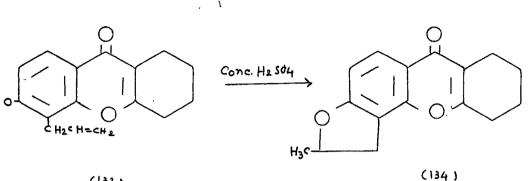
6-Hydroxy-1,2,3,4-tetrahydro xanthone (130) on acetylation with acetic anhydride and fused sodium acetate

(130)



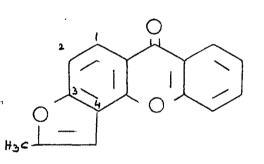
(132)

١

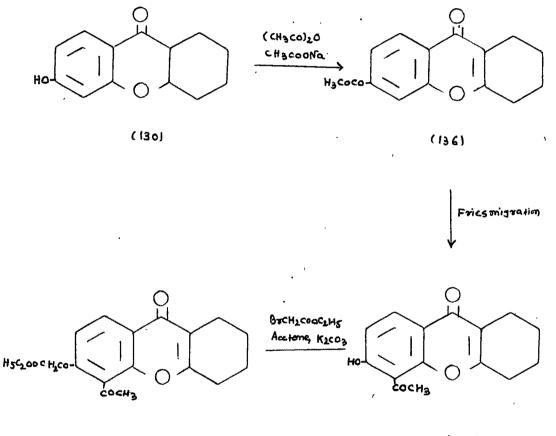

л 'т

(133)

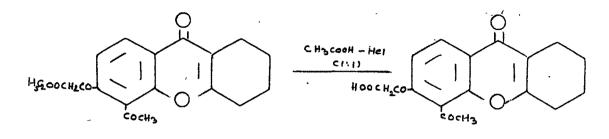
I



(132)



Phio


(135)

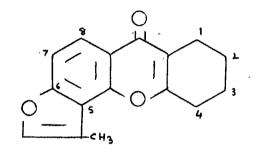
gave 6-acetoxy_1,2,3,4_tetrahydroxanthone. Fries migration of 6-acetoxy-1,2,3,4-tetrahydroxanthone (136) afforded 6-hydjoxy_5-acety1_1,2,3,4-tetrahydroxanthone (137), which was condensed with ethyl bromo acetate in the presence of anhydrous potassium carbonate and dry acetone gave ethyl--5-acety1_1,2,3,4-tetrahydro_6-xanthonyloxy acetate (138). (138), was hydrolysed by refluxing it with acetic acid, hydrochloric acid (1:1) to give corresponding carboxylic acid, 5-acety1-1,2,3,4-tetrahydro-6-xanthonyloxy acetic acid (139). (139), when refluxed with sodium acetate and acetic anhydride gave 4'_methyl_1,2,3,4_tetrahydro_furo (3',2'-5,6) xanthone (140). (140) was dehydrogenated with palladised charcoal in boiling diphenyl ether to give 4'_methyl_furo (2',3'-3,4) xanthone (141).

(138)

(137)

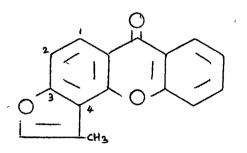
(138)

,


,

1

ş


(139)

300)20 (сн CH3 COONA

(140)

(141)

KEXPERIMENTAL.

I.R. spectra were determined with Perkin_Elmer 457 grating spectrophotometer in nujol.

NMR spectra were recorded on Varian A-60 spectrophotometer using TMS as internal standard. Solvent $CF_3(corr (Frg. 7))$ $CDcl_3(Frg. 7)$

The ultra_violet absorption spectra were measured with Beckmann DU Spectrophotometer.

Synthesis of 9-methyl-1,2,3,4-tetrahydrocyclopenta (b) furo (3,2-g) benzopyran_4-one (108) : 7-Hydroxy_8-methyl-1,2,3,4-tetrahydrocyclopenta (b) benzopyran_4-one (104) :

A mixture of 2_methylresorcinol (3 g.) and ethyl cyclopentanone_2_carboxylate (4 ml.) was refluxed with diphenyl ether (10 ml.) for three hrs. with a short condenser to facilitate the removal of alcohol formed. After cooling the separated product was filtered and washed several times with petroleum ether. It crystallised from dimethyl formamide, m.p. 309° . Yield 2.0 g. Analysis : Found : C, 71.54 ; H, 5.47 %. Ci_3H_1_2O_3 : requires : C, 72.21 ; H, 5.55 %. Allylation ∂f^{*} 7_hydroxy_8_methyl_1.2,3,4_tetrahydrocyclopenta (b) benzopyran_4-one : 7_Allyloxy_8_methyl_1.2,3,4_tetra_ hydrocyclopenta (b) benzopyran_4-one (105) :

A mixture of 7_hydroxy_8_methyl_1,2,3,4_tetra_ hydrocyclopenta (b) benzopyran_4_one (2g.), allyl bromide

(1.2 g.) and anhydrous potassium carbonate (8 g.) was refluxed in dry dimethyl formamide (150 ml.) in a water bath for 10 hr. The reaction mixture was poured into water. The separated product was filtered, washed with very dilute sodium hydroxide solution to remove unreacted compound and crystallised from alcohol, m.p. 137°. Yield 1.3 g. : C. 74.86 : H. 5.95 % Found Analysis requires : C. 75.00 : H. 6.25 %. C16H1603 : Claisen rearrangement of 7-allyloxy_8-methyl_1,2,3,4-tetra_ hydrocyclopenta (b) benzopyran_4-one : 7-Hydroxy_6-ally1--8-methyl-1,2,3,4-tetrahydrocyclopenta (b) benzopyran_4one (106) :

7-Allyloxy_8-methyl_1,2,3,4-tetrahydrocyclopenta (b) benzopyran_4-one (2 g.) was refluxed with dimethyl aniline (10 ml.) for 8 hr. After cooling, the reaction mixture was poured into conc. hydrochloric acid (50 ml.) containing pieces of ice. The separated product was filtered and dissolved in sodium hydroxide solution. The solution was filtered. The filtrate on acidification with conc. hydrochloric acid gave the product which was filtered and crystallised from acetic acid, m.p. 222°. Yield 1.5 g. : C. 74.74 : H. 6.28 %. Analysis Found : requires : C, 75.00 ; H, 6.25 %. $C_{16}H_{16}O_{3}$: I.R.spectrum y- 1630 cm. (y-pyronyl > C=0 group) and a broad band at 3300 cm ... (aromatic hydroxy group).

7-Hydroxy-8-methyl-6-acetaldehyde-1,2,3,4-tetrahydrocyclopenta (b) benzopyran_4-one (107) :

7-Hydroxy_6-ally1_8_methy1_1,2,3,4_tetrahydro_ cyclopenta (b) benzopyran_4-one (106) (500 mg.) was vigorously shaken with osmium tetroxide (50 mg.) and water (100 ml.). To the dark solution was added potassium periodate (2g.) in 100 ml. water) dropwise over a period of 3 hr. The ethyl acetate layer was separated, dried and evaporated. The residue was dissolved in chloroform and the clear solution was percolated through a short column of alumina. The residue left after evaporation of chloroform crystallised from alcohol, m.p. 260° (decomp.). Yield 0.3 g. Analysis : Found : C. 69.76 ; H. 5.51 % : requires : C, 69.69 ; H, 5.42 %. $C_{1,5}H_{1,4}O_{4}$ Cyclisation of 7_hydroxy_8_methy1_6_acetaldehydo_1,2,3,4_ tetrahydrocyclopenta (b) benzopyran_4-one 9-Methyl_ : -1,2,3,4-tetrahydrocyclopenta (b) furo (3,2-g) benzopyran--4 - one (108)

7-Hydroxy_8_methyl_6_acetaldehydo_1,2,3,4_tetrahydrocyclopenta (b) benzopyran_4-one (107) (250 mg.) was heated with polyphosphoric acid (10 ml.) in a water bath for 1 1/2 hr. and then poured into ice water. The solid separated was filtered and washed with dilute sodium hydroxide solution to remove uncyclised compound. A chloroform extract of the dried residue was passed over a short column of

alumina. Evaporation of solvent left a product which crystallised from benzene, m.p. 266° . Yield LOO mg. Analysis : Found : C, 74.84 ; H, 5.01 % $C_{15}H_{12}O_3$: requires : C, 75.00 ; H, 5.00 %. I.R. spectrum 875 cm. (furan ring) and at 1615 cm. (lactonyl >C=0 group).

Chloroform 2+6 nm (log e 4.76), 278 nm (log e 4.17), 314 nm (log e 3.99).

Synthesis of 7,9-dimethyl-1,2,3,4-tetrahydrocyclopenta (b) furo (3,2-g) benzopyran_4-one (110) : Cyclisation of 7-hydroxy-6-allyl-8-methyl-1,2,3,4-tetrahydrocyclopenta (b) furo (3,2-g) benzopyran_4-one : 7,9-Dimethyl-1,2,3,4,6,7hexahydrocyclopenta (b) benzopyran_4-one (109) :

7-Hydroxy_6-allyl_8-methyl_1,2,3,4-tetrahydro_ cyclopenta (b) furo (3.2-g) benzopyran-4-one (1 g.) was triturated with conc. sulphuric acid (5 ml.) in a water bath for 10 minutes. The contents were poured into crushed ice. The separated product was filtered and washed with dilute sodium hydroxide solution to remove uncyclised compound. It crystallised from benzene, m.p. 154 Yie.d 0.8 g. : C. 75.01 ; H. 6.45 %. Analysis Found 1 requires : C, 75.00 ; H, 6.25 %. $C_{16}H_{16}O_{3}$: 1630 cm... (y-pyronyl >C=0 group). I.R. spectrum

Dehydrogenation of 7,9-dimethyl-1,2,3,4,6,7-hexahydrocyclopenta (b) benzopyran-4-one : 7,9-Dimethyl-1,2,3,4-tetrahydrocyclopenta (b) furo (3,2-g) benzopyran-4-one (110) :

A mixture of 7,9-dimethyl-1,2,3,4,6,7-hexahydrocyclopenta (b) benzopyran-4-one (0.5 g.) and palladised charcoal (10 %; 0.3 g.) and diphenyl ether (4 ml.) was refluxed for 10 hr. The reaction mixture was filtered hot and after cooling, petroleum ether was added to the filtrate. The separated product was filtered and washed several times with petroleum ether. The benzene solution of the product was passed over a short column of alumina. Evaporation of solvent left a product, which crystallised from benzene, M.p. . Yield 0.2 g.

Analysis : Found : C, 76.17 ; H, 5.53 % $C_{1.6}H_{1.4}O_3$: requires : C, 76.00 ; H, 5.51 %. I.R. spectrum : 835 cm. (furan), 1630 cm. (y-pyronyl >C=0 group).

Methanol 246 nm (log e 4.82), 290 nm (log e 4.19), 298 nm (log e 4.11) and at 320 nm (log e 4.03). Synthesis of <8 (methyl=1,2,3,4,8,9-hexahydrocyclopenta (b) furo (2,3-h) benzopyran_4-one (114) : 7-Hydroxy-1,2,3,4tetrahydrocyclopenta (b) benzopyran_4-one (111) :

A mixture of resorcinol (3 g.) and ethyl cyclo-

pentanone_2_carboxylate (4.5 ml.) was refluxed with diphenyl ether (10 ml.) for 3 hr. with a short condenser to facilitate the removal of alcohol formed. After cooling, the separated product was filtered and washed several times with petroleum ether. It crystallised from alcohol, m.p. 288° . Yield 2 g. Analysis : Found : C, 71.52 ; H, 5.35 % $C_{1,2}H_{1,0}O_{3}$: requires : C, 71.29 ;H, 4.95 %. Allylation of 7_hydroxy_1,2,3,4_tetrahydrocyclopenta (b) benzopyran_4_one : 7_Allyloxy_1,2,3,4_tetrahydrocyclopenta (b) benzopyran_4_one (112) :

A mixture of 7-hydroxy-1,2,3,4-tetrahydrocyclopenta (b) benzopyran_4-one (2 g.), allyl bromide (1.2 g.) and hy anhydrous potassium carbonate (8.0 g.) was refluxed in dry acetone (200 ml.) in a water bath for 10 hr. The reaction mixture was worked up as described earlier. The product crystallised from benzene-petroleum ether, m.p. 112⁰. Yield 1.5 g.

A nalysis : Found : C, 74.33 ; H, 5.76 %C₁₅H₁₄O₃ : requires : C, 74.39 ; H, 5.78 %. Claisen rearrangement of 7-allyloxy-1,2,3,4-tetrahydrocyclopenta (b) benzopyran_4-one : 7-Hydroxy-8-allyl-1,2,3,4-tetrahydrocyclopenta (b) benzopyran_4-one (113)

7-Allyloxy-1,2,3,4-tetrahydrocyclopenta (b) benzopyran_4-one (2 g.) was refluxed with dimethyl aniline (10 ml.) for 8 hr. The reaction mixture was worked up as described earlier. The product crystallised from alsohol, m.p. 267°. Yield 1.5 g.

Analysis : Found : C, 73.92 ; H, 5.84 %C₁₅H₁₄O₃ : requires : C, 74.39 ; H, 5.78 %. I.R. spectrum: 1620 cm. (y-pyronyl >C=0 group) and a broad band at 3400 cm. (aromatic hydroxy group). Cyclisation of 7-hydroxy-6-allyl-1,2,3,4-tetrahydrocyclopenta (b) benzopyran-4-one : 8-Methyl-1,2,3,4,8,9-hexahydrocyclopenta (b) furo (2,3-h) benzopyran-4-one (114) :

7-Hydroxy_6-ally1-1,2,3,4-tetrahydrocyclopenta (b) benzopyran_4-one (l g.) was triturated with conc. sulphuric acid (5 ml.) in water bath for 15 minutes. The reaction mixture was worked up as described earlier. The product crystallised from alcohol, m.p. 190°. Yield 0.8 g. Analysis : Found : C, 74.06 ; H, 5.79 % $C_{15}H_{14}O_3$: requires : C, 74.39 ; H, 5.78 %. I.R.spectrum : 1635 cm. (y-pyronyl >C=0 group). Methanol 248 nm (log e 4.29), 256 nm (log e 4.32), 300 nm (log e 4.12).

Attempted synthesis of 8_methyl_1,2,3,4_tetrahydrocyclo_ penta (b) furo (2,3_h) benzopyran_4_one : Attempted dehydrogenation of 8_methyl_1,2,3,4,8,9_hexahydrocyclopenta (b) furo (2,3_h) benzopyran_4_one :

(1) A solution of 8-methyl-1,2,3,4,8,9-hexahydro-

cyclopenta (b) furo (2,3-h) benzopyran_4-one (114) (0.5 g) in diphenyl ether (6 ml.) was refluxed with palladised charcoal (0.4 g.; 10 %) for 6 hr. to 30 hr. The reaction mixture was filtered hot and the filtrate was allowed to cool. The separated product was filtered and crystallised from alcohol, m.p. 190°. It was found to be original compound. Mixed m.p. with (114) did not depress.

(2) A solution of 8_methyl_l,2,3,4,8,9_hexahydrocyclopenta (b) furo (2,3_h) benzopyran_4_one (0.5 g.) in dry benzene (50 ml.) was refluxed with DDQ (0.5 g.) for 35 hr. The reaction mixture was filtered hot and benzene was evaporated. Evaporation of solvent left a red colour residue, which was dissolved in chloroform and passed over a short column of alumina. Evaporation of solvent left a colourless product which was crystallised from alcohol, m.p. 190°. Yield 0.3 g. It was found to be original compound. Mixed m.p. with (114) did not depress.

Synthesis of 9_methyl_1,2,3,4_tetrahydrocyclopenta (b) <u>furo (2,3-h) benzopyran_4_one</u> (119) : <u>Acetylation of</u> <u>7-hydroxy_1,2,3,4_tetrahydrocyclopenta (b) benzopyran_4-one</u> : <u>7_Acetoxy_1,2,3,4_tetrahydrocyclopenta (b) benzopyran_</u> <u>-4-one</u> (115) :

A mixture of 7-hydroxy-1,2,3,4-tetrahydrocyclopenta (b) benzopyran_4-one (2 g.), acetic anhydride (10 ml.) and a few crystals of sodium acetate was heated gently on a Wire gauze with a low flame for 2 hr. The reaction mixture

was poured into crushed ice. The product was filtered and washed with dilute sodium hydroxide solution to remove unreacted compound. It crystallised from alcohol, m.p. 141°. Yield 1.6 g. Analysis : Found : C, 68.98 ; H, 4.73 %. C1.4H1204 : requires : C, 68.85 ; H, 4.92 %. Fries migration of 7_acetoxy_1,2,3,4_tetrahydrocyclopenta (b) benzopyran_4_one : 7_Hydroxy_8_acety1_1,2,3,4_tetra_ hydrocyclopenta (b) benzopyran_4_one (116) :

183 -

An intimate mixture of 7-acetoxy-1,2,3,4-tetrahydrocyclopenta (b) benzopyran_4-one (2 g.) and powdered anhydrous aluminium chloride (6 g.) was heated in an oil bath at 140° for 3hr. After cooling, it was decomposed with ice and conc. hydrochloric acid. The product was filtered and treated with sodium hydroxide solution. The product is soluble in sodium hydroxide solution, it was filtered, acidified with hydrochloric acid and crystallised from acetic acid, m.p. 215° . Yield 1.5 g.

The compound was soluble in alkali and developed red colouration with alcoholic ferric chloride solution. Analysis : Found : C, 68.80 ; H, 5.89 %. $C_{1.4}H_{1.2}O_{4}$: requires : C, 68.85 ; H, 4.92 %. Ethyl_8_acetyl_4_oxo_1,2,3,4_tetrahydrocyclopenta (b) benzopyranyloxy_7_acetate (117) :

A mixture of 7-hydroxy_8-acety1-1,2,3,4-tetra_

hydrocyclopenta (b) benzopyran_4_one (1 g.), ethyl bromo acetate (1 ml.) and anhydrous potassium carbonate (5 g.) was refluxed in dry acetone (100 ml.) for 6 hr. in a water bath. The acetone was evaporated and the residue was treated with water. The separated product was filtered and washed with dilute sodium hydroxide solution to remove unreacted compound. It crystallised from alcohol, m.p. 163°. Yield 0.7 g. : C. 65.00 : H. 5.46 % : Found Analysis : requires : C, 65.45 ; H, 5.45 %. C18H1806 Hydrolysis of ethyl_8_acetyl_4_oxo_1,2,3,4,_tetrahydro_ cyclopenta (b) benzopyranyloxy_7_acetate : 8_Acety1_4_oxo_ -1,2,3,4_tetrahydrocyclopenta (b) benzopyranyloxy_7_acetic acid (118) :

A mixture of ethyl_8_acetyl_4_oxo-1,2,3,4_tetra_ hydrocyclopenta (b) benzopyranyloxy_7_acetate (l g.), distilled acetic acid (20 ml.) and A.R. Hydrochloric acid (20 ml.) was refluxed for 4 hr. The reaction mixture was diluted with water and allowed to stand. The product which separated was filtered and dissolved in sodium bicarbonate solution and filtered. The filtrate was acidified and the separated product was filtered. It crystallised from alcohol, m.p. 245° (decomp.). Yield 0.7 g. Analysis : Found : C, 63.54; H, 4.47 % $C_{16}H_{14}O_{6}$: required : C, 63.57; H, 4.63 %e

Cyclisation of 8-acetyl-4-oxo-1,2,3,4-tetrahydrocyclopenta (b) benzopyranoloxy-7-acetic acid : 9-Methyl-1,2,3,4-tetrahydrocyclopenta (b) furo (2,3-h) benzopyran-4-one (119) :

8 - Acetyl - 4 - 0xo - 1, 2, 3, 4 - tetrahydrocyclopenta (b)benzopyranyloxy-7-acetic acid (0.5 g.) was cyclised by refluxing it with acetic anhydride (6 ml.) and freshly fused sodium acetate (l g.) on a sand bath for 4 hr. After cooling, the mixture was poured into crushed ice. The separated product was filtered and wasked with sodium bicarbonate solution to remove uncyclised acid. It crystallised from acetic acid, m.p. 281°. Yield 0.3 g. Analysis : Found : C, 74.52; H, 4.95 % C_{15H12O3} : requires : C, 75.00; H, 5.00 %. I.R. spectrum : 1625 cm⁻¹ (y-pyronyl > C=0 group), 825 cm⁻¹ (furan). Chloroform Max. 245 rm (log e 4.60), 304 nm (log e

3.85), 340 nm (log e 2.87). Synthesis of 5_methyl_1,2,3,4_tetrahydro_furo (2',3'-6,7) <u>xanthone</u> (124) : <u>6-Hydroxy_5_methyl_1,2,3,4_tetra_</u> <u>hydroxanthone</u> (120) :

A mixture of 2_methylresorcinol (3 g.) and ethylcyclohexanone_2_carboxylate (4 mll) was refluxed with diphenyl ether (10 ml.) for three hrs: with a short condenser to facilitate the removal of alcohol formed. After cooling, the separated product was filtered and washed

several times with petroleum ether. It crystallised from dimethyl formamide, m.p. 270°. Yield 2 g. Analysis : Found : C, 72.90 ; H, 6.07 %. C14H1403 : requires : C, 73.05 ; H, 6.08 %. Allylation of 6_hydroxy_5_methyl_1,2,3,4_tetrahydroxanthone : 6_Allyloxy_5_methyl_1,2,3,4_tetrahydroxanthone (121) :

A mixture of 6-hydroxy-5-methyl-1,2,3,4-tetrahydroxanthone (2 g.), allyl bromine (1 g.) and anhydrous potassium carbonate (8 g.) was refluxed in dry acetone (200 ml.) in a water bath for 10 hr. The reaction mixture was worked up as described earlier. The product crystallised from benzene-petroleum ether, m.p. 110° . Yield 1.5 g. Analysis : Found : C, 75.68 ; H, 6.34 % $C_{1.7}H_{18}O_3$: requires : C, 75.53 ; H, 6.66 %. Claisen rearrangement of 6-allyloxy-5-methyl-1,2,3,4-tetrahydroxanthone : 6-Hydroxy-7-allyl-5-methyl-1,2,3,4-tetrahydroxanthone (122) :

6-Allyloxy-5-methyl-1,2,3,4-tetrahydroxanthone (2 g.) was refluxed with dimethyl aniline (10 ml.) for 8 hr. The reaction mixture was worked up as usual. The product crystallised from alcohol, m.p. 221°. Yield 1.5 g. Analysis : Found : C, 75.26 ; H, 6.20 % $C_{1,7}H_{1,8}O_3$: requires : C, 75.53 ; H, 6.66 %. I.R. spectrum : 1625 cm. (y-pyronyl >C=0 group), and a broad band at 3500 cm. (aromatic hydroxy group).

6-Hydroxy_7_acetaldehydo_5_methyl_1,2,3,4_tetrahydro_

xanthone (123) :

6-Hydroxy-7-ally1-5-methy1-1,2,3,4-tetrahydroxanthone (500 mg.) was vigorously shaken with osmium tetroxide (50 mg.) and water (100 ml.). To the dark solution was added potassium periodate (2 g. in 100 ml. water) dropwise over a period of 3 hr. The ethyl acetate layer was separated, The residue was dissolved in chloroform and the clear solution was percolated through a short column of alumina. The residue left after evaporation of chloroform ccrystallised from acetic acid. m.p. 267° • Yield 300 mg. : C. 70.71 ; H. 6.18 % Analysis : Found C16H1604 : requires : C, 70.58 ; H, 5.88 %. I.R. spectrum : 1630 cm^{-1} (y-pyronyl >C=0 group). 1700 cm... (aldehyde >C=0 group), a broad band at 3350 cm... (aromatic hydroxy group).

Cyclisation of 6-hydroxy-7-acetaldehydo-5-methyl-1,2,3,4tetrahydroxanthone : 5-Methyl-1,2,3,4-tetrahydro furo (2',3'-6,7) xanthone (12+) :

6-Hydroxy-7-acetaldehydo-5_methyl-1,2,3,4-tetrahydroxanthone (250 mg.) was treated with polyphosphoric acid (10 ml.) in a water bath for 1 1/2 hr. and poured into ice water. The solid separated was filtered and washed with dilute sodium hydroxide solution to remove uncyclised compound. A chloroform extract of the dried residue was passed over a short column of alumina. Evaporation of solvent left a product, which was crystallised from alcohol, m.p. 198°. Yield 100 mg.

Analysis : Found : C, 75.15 ; H, 5.37 % C16H1403 : requires : C, 75.55 ; H, 5.50 %. I.R. spectrum : 870 cm. (furan), 1640 cm. (y-pyronyl >C=0 group).

Chloroform 246 nm (log @ 4.74), 278 nm (log e 4.60).

Synthesis of 5'-5-Dimethyl-1,2,3,4-tetrahydro furo (2',3'-6,7) xanthone (127) : Acetylation of 6-hydroxy-7-allyl--5-methyl-1,2,3,4-tetrahydro xanthone : 6-Acetoxy-7-allyl-5-methyl-1,2,3,4-tetrahydroxanthone (125) :

A mixture of 6-hydroxy-7-ally1-5-methy1-1,2,3,4-tetrahydroxanthone (2 g.) and acetic anhydride (10 ml.) containing a few crystals of fused sodium acetate was heated under reflux for 5 hr. The reaction mixture was poured into crushed ice and was shaken for about 15 minutes. The compound which separated on standing was filtered and crystallised from alcohol, m.p. 128°. Yield 1.8 g. Analysis : Found : C, 72.64 ; H, 6.40 % $C_{1.9}H_{20}O_4$: requires : C, 73.07 ; H, 6.41 %. Bromination of 6-acetoxy-7-ally1-5-methy1-1,2,3,4,-tetrahydroxanthone : 7-(2,3-Dibromopropy1)-5-methy1-6-acetoxy-

-1,2,3,4-tetrahydroxanthone (126) :

A solution of bromine (1.6 g.; 0.01 M) in acetic acid (25 ml.) was added dropwise to a well stirred solution of 6-acetoxy-7-ably1-5-methy1-1,2,3,4-tetrahydroxanthone (3.1 g.; 0.01 M) in acetic acid, (35 ml.) during a period of 1 hr. The solution was poured into crushed ice and allowed to stand. The product which separated was collected by filtration. A solution in chloroform of the dried product was run over a short column of alumina. Evaporation of solvent left a residue which crystallised from methanol, $m.p. 146^{\circ}$. Yield 2 g.

Analysis : Found : C, 48.29 ; H, 4.08; Br, 33.53 % C₁₉H₂₀O₄Br₂ : requires : C, 48.31 ; H, 4.24; Br, 33.90 %. Cyclisation of 7-(2',3'-dibromopropyl)-5-methyl-6-acetoxy--1,2,3,4-tetrahydroxanthone : 5',5-Dimethyl-1,2,3,4tetrahydrofuro (2',3'-6,7) xanthone (127) :

7-42',3'-Dibromopropyl)-5-methyl-6-acetoxy-1,2,3,4tetrahydroxanthone (2g.) was heated under reflux for 2 hr. with a solution of potassium hydroxide (2.6g.) in absolute alcohol (75 ml.). The reaction mixture was concentrated to one-third of its volume, diluted with water (25 ml.) and was immediately acidified with dilute hydrochloric acid and was ether extracted. Evap@ration of ether left a pasty product which was washed with liquid ammonia (10 ml.; 10 %) and then with water. A chloroform solution of the dried solid product was run over a short column of alumina. Evaporation of the solvent gave the product which crystallised from acetic acid, m.p. 223°. Yield 0.7 g. Analysis 1: Found : C, 76.07 ; H, 5.52 % C₁₇H₁₆O₃ : requires : C, 76.12 ; H, 5.97 %. I.R. spectrum : 850 cm⁻¹ (furan), 1630 cm⁻¹ (y-pyronyl >C=0 group).

Chloroform 252 nm (log e 4.94), 290 nm (log e Max. 4.26), 326 nm (log e 4.38).

Sunthesis of 5',4_dimethyl furo (3',2'-2,3) xanthone (129) : Cyclisation of 6_hydroxy_7_allyl_5_ methyl_1,2,3,4_tetra_ hydroxanthone : 5',5_Dimethyl_1,2,3,4_4',5'_hexahydrofuro (2',3'-6,7) xanthone (128) :

 $6-Hydroxy_7-allyl_5-methyl_1,2,3,4-tetrahydro_$ xanthone (122) (1 g.) was triturated with conc. sulphuricacid (5 ml.) in a water bath for 15 minutes. The contentswere poured into crushed ice. The separated product wasfiltered and washed with dilute sodium hydroxide solutionto remove uncyclised compound. It crystallised from alcohol, $m.p. <math>210^{\circ}$. Yield 0.8 g. Analysis : Found : C, 75.18 ; H, 6.35 %. $C_{1.7}H_{18}O_3$: requires : C, 75.53 ; H, 6.66 %. I.R. spectrum : 1635 cm^{-1} (y-pyronyl >C=0 group). Chloroform Max. $2+8 \text{ nm} (\log 0 4.22), 255 \text{ nm} (\log 0 4.22), 255 \text{ nm} (\log 0 4.24), 304 \text{ nm} (\log 0 4.18).$ Dehydrogenation of 5'_5_dimethyl_1,2,3,4,4',5'_hexahydro_ furo (2',3'_6,7) xanthone : 5',4'_Dimethyl_furo (3',2'_2,3) xanthone (129) :

A mixture of 5',5-dimethyl-1,2,3,4,4',5'-hexahydrofuro (2',3'-6,7) xanthone (0.5 g.) and palladised charcoal (10 %; 0.3 g.) and diphenyl ether (5 ml.) was refluxed for 10 hr. The reaction mixture was filtered hot and after cooling, petroleum ether was added to the filtrate. The separated product was filtered and washed several times with petroleum ether. It crystallised from acetic acid, m.p. 245° . Yield 0.25 g.

Analysis : Found : C, 77.00 ; H, 4.34 % $C_{1,7}H_{1,2}O_3$: requires : C, 77.27 ; H, 4.55 %. I.R. spectrum : 1640 cm... (y-pyronyl > C=0 group), 880 cm... (furan).

Methanol Max. 3.10), 300 nm (log e 3.12), 360 nm (log e 2.84). Synthesis of 1,2,3,4-tetrahydro_furo (3',2'-5,6) xanthone (133) : <u>7-Hydroxy-1,2,3,4-tetrahydroxanthone</u> (130) : A mixture of resorcinol (3 g.) and ethyl cyclohexanone_2-carboxylate (4 ml.) was refluxed with diphenyl ether (10 ml.) for 3 hr. with a short condenser to facilitate the removal of alcohol formed. After cooling, the separated product was filtered and washed several times with petroleum ether. It crystallised from alcohol, m.p. 278° . Yield 2.g g. Analysis : Found : C, 72.38 ; H, 5.79 % $C_{1,3}H_{1,2}O_3$: requires : C, 72.21 ; H, 5.55 %. Allylation of 6-hydroxy-1,2,3,4-tetrahydroxanthone : 7.Allyloxy-1,2,3,4-tetrahydroxanthone (131) :

A mixture of 7_hydroxy_1,2,3,4_tetrahydroxanthone (2 g.), allyl bromide (1 g.) and anhydrous potassium carbonate (8 g.) was refluxed in dry acetone (200 ml.) in a water bath for 10 hr. The reaction mixture was worked up as described earlier. The product crystallised from petroleum ether, m.p. 88°. Yield 1.5 g. Analysis : Found : C, 74.98 ; H, 6.24 % C16H1603 : requires : C, 75.00 ; H, 6.25 %. Claisen rearrangement of 6_allyloxy_1,2,3,4_tetrahydro_ xanthone : 6_Hydroxy_5_allyl_1,2,3,4_tetrahydroxanthone(132) :

 $6-Allyloxy_1, 2, 3, 4$ -tetrahydroxanthone (2 g.) was refluxed with dimethyl aniline (10 ml.) for 8 hr. The reaction mixture was worked up as described earlier. The product crystallised from alcohol, m.p. 236° . Yield 1.5 g. Analysis : Found : C, 74.54 ; H, 6.47 %. C₁₆H₁₆O₃ : requires : C, 75.00 ; H, 6.25 %. I.R. Spectrum : 1620 cm... (y-pyronyl >C=0 group), and a broad band at 3400 cm... (aromatic hydroxy group).

1,2,3,4_Tetrahydro furo (3',2'-5,6) xanthone (133) :

6-Hydroxy.5-ally1-1,2,3,4-tetrahydroxanthone (500 mg.) was vigorously shaken with osmium tetroxide (50 mg.) and water (100 ml.). To the dark solution was added potassium periodate (2 g. in 100 ml. water) dropwise over a period of 3 hr. The ethyl acetate layer was separated, dried and evaporated. The residue was dissolved in chloroform and the clear solution was percolated through a short column of alumina. The residue left after evaporation of chloroform was used for further reaction.

The pasty product was heated with polyphosphoric acid (10 ml.) in a water bath for 3 2 hrs. The reaction mixture was poured into ice_water. The solid separated was filtered and washed with dilute sodium hydroxide solution to remove uncyclised compound. A benzene solution of the dried product was passed over a short column of alumina. Evaporation of solvent left a product which was crystallised from benzene, m.p. 205°. Yield 50 mg.

Analysis : Found : C, 74.85 ; H, 4.82 %. $C_{15}H_{12}O_{3}$: requires : C, 75.00 ; H, 5.00 %. I.R. spectrum : 840 cm... (furan). 1615 cm... (y-pyronyl >C=0 group). 193

Synthesis of 5'_methyl_furo (2',3'_3,4) xanthone (135) Cyclisation of 6-hydroxy_5-ally1-1,2,3,4-tetrahydro xanthone : 5'_Methyl_1,2,3,4,4',5'_hexahydro (3 ,2 _5,6) xanthone(134) : 6-Hydroxy_5-ally1-1,2,3,4-tetrahydroxanthone (1 g.) was triturated with conc. sulphuric acid (5 ml.) in a water bath for 15 minutes. The reaction mixture was worked up as described earlier. It crystallised from alcohol. m.p. 180°. Yield 0.8 g. : Found : C. 75.23 : H. 6.40 %. Analysis C16H1603 : requires : C, 75.00 ; H, 6.25 %. I.R. spectrum : 1635 cm. (y-pyronyl >C=0 group). Methanol 2+8 nm (log e 4.32), 255 nm (log e 4.35), 302 nm (log e 4.12). Dehydrogenation of 5'-methyl_1,2,3,4,4',5'-hexahydro (3',2'-5,6) xanthone : 5'_Methyl_fure (2',3'-3,4) xanthone (135):

A mixture of 5, methyl_1,2,3,4,4,5, hexahydro xanthone (0.5 g.) and palladised charcoal (10 %; 0.3 g.) and diphenyl ether (4 ml.) was refluxed for 10 hr. The reaction mixture was filtered hot and after cooling, petroleum ether was added to the filtrate. The separated product was filtered and washed several times with petroleum ether. The benzene solution of the product was run over a short column of alumina. Evaporation of solvent left a product which crystallised from benzene-petroleum ether, m.p. 172°. Yield 0.3 g. The mixed m.p. with (134) was depressed by 25° . The m.p. of (135) previously prepared by Puranik and Rajopal⁶⁸ is 170° .

Analysis : Found : C, 76.81 ; H, 3.95 % $C_{1.6}H_{1.0}O_3$: requires : C, 76.80 ; H, 4.00 %. I.R.spectrum . 1645 cm... (y-pyronyl >C=0 group), and at 825 cm... (furan).

Methanol $\lambda_{Max.}$ 255 nm (log e 4.77), 282 nm (log e 3.46), 293 nm (log e 3.46), 340 nm (log e 3.43). Synthesis of 4'_methyl_furo (2',3'-4.3) xanthone (141) : Acetylation of 6-hydroxy_1,2,3,4-tetrahydroxanthone : 6-Acetoxy--1,2,3,4,-tetrahydroxanthone (136) :

6-Hydroxy-1,2,3,4-tetrahydroxanthone (2g.), acetic anhydride (10 ml.) and a few crystals of sodium acetate was heated gently on a wire gauze with a low flame for two hours. The reaction mixture was worked up as described earlier. The product crystallised from alcohol, m.p. 106[°], Xield 1.6 g.

Analysis : Found : C, 69.72 ; H, 5.45 % C₁₅H₁₄O₄ : requires : C, 69.78 ; H, 5.43 %. I.R. spectrum : 1750 cm... (acetoxy group), 1630 cm... (y-pyronyl >C=0 group).

Fries migration of 6_acetoxy_1,2,3,4_tetrahydroxanthone : 6_Hydroxy_5_acety1_1,2,3,4_tetrahydroxanthone (137) : An intimate mixture of 6_acetoxy_1,2,3,4_tetra_ hydroxanthone (2 g.) and powdered anhydrous aluminium chloride (6 g.) was heated in an oil bath at 140° for 3 hr. After cooling, it was decomposed with ice and conc. hydrochloric acid. The product was filtered and treated with sodium hydroxide solution. The product is soluble. It was filtered, acidified with hydrochloric acid and crysta. llised from alcohol, m.p. 218° . Yield 1.5 g. The compound was soluble in alkali and developed red colouration with alcoholic ferric chloride solution.

Analysis : Found : C, 69.58 ; H, 5.17 %. $C_{15}H_{14}O_{4}$: requires : C, 69.78 ; H, 5.42 %. I.R. spectrum: 1715 cm... (ketonic >C=0 group), 1615 cm... (y-pyronyl >C=0 group), and a broad band at 3500 cm...(aromatic hydroxy group).

Ethyl-5_acetyl_1,2,3,4_tetrahydro_6_xanthonyloxy acetate (138) :

A mixture of 6-hydroxy-5-acetyl-1,2,3,4-tetrahydroxanthone (1 g.), ethyl bromo acetate (1 ml.) and anhydrous potassium carbonate (5 g.) was refluxed in dry acetone (100 ml.) for 6 hr. in a water bath. The acetone was evaporated and b the residue was treated with water. The separated product was filtered and washed with dilute sodium hydroxide solution to remove unreacted compound. It crystallised from alcohol, m.p. 155° . Yield 0.7 g.

Analysis : Found : C, 65.80 ; H, 5.67 %. C₁₉H₂₀O₆ : requires : C, 66.26 ; H, 5.81 %. I.R. spectrum : 1630 cm. (y-pyronyl >C=0 group), 1695 cm. (ketonic >C=0 group), 1730 cm. (ester > C=0 group).

Hydrozysis of ethyl_5_acetyl_1,2,3,4_tetrahydro_xanthonyloxyacetate : 5_Acetyl+1,2,3,4_tetrahydro_6-xanthonyloxy acetic acid (139) :

A mixture of ethyl_5-acetyl_1.2.3.4-tetrahydro_6xanthonyloxy acetate (1 g.), distilled acetic acid (20 mh) and conc. hydrochloric acid (20 ml.) was refluxed for 4 hr. The reaction mixture was diluted with water and allowed to stand. The product which separated was filtered, dissolved in sodium bicarbonate solution and filtered. The filtrate was acidified and the separated product was filtered . It crystallised from alcohol, m.p. 216°. (melt with effervescence). Yield 0.7 g. Analysis : Found :C:64.97: H. 4.67 % (After heating in vacuum at 110% C12H1606 : requires : C,64.55 ; H, 5.06 %. I.R. spectrum : 1620 cm ... (y-pyronyl >C=0 group), 1700 cm ... (ketonic >C=0 group). Cyclisation of 5-acety1-1,2,3,4-tetrahydro_6-xanthonyloxy_ acetic acid : 4'-'Methyl-1, 2, 3, 4-tetrahydro furo (3; 2'-5, 6) xanthone (140) 1 5-Acety1-1,2,3,4-tetrahydro-6-xanthonyloxy acetic

197 ,

Acid (0.5 g.) was cyclised by refluxing it with acetic anhydride (6 ml.) and freshly fused sodium acetate (1 g.) on a sand bath for 4 hr. After cooling, the mixture was **poured** into crushed ice. The separated product was filtered and washed with sodium bicarbonate solution to remove uncyclised acid. It crystallised from acetic acid, m.p. 226°. Yield 0.3 g.

Analysis : Found : C, 75.61 ; H, 5.47 % C16H1403 : requires : C, 75.60 ; H, 5.51 %. I.R. spectrum : 1620 cm. (y-pyronyl >C=0 group), 815 cm. (furan).

 $\begin{array}{c} \begin{array}{c} \text{Chloroform} \\ \text{Max.} \end{array} 244 \text{ nm (log e 4.64).} \end{array}$

Dehydrogenation of $42methyl_1, 2, 3, 4$ -tetrahydro furo (3', 2'-5, 6) xanthone : 4'-Methyl_furo (3', 2'-4, 3) xanthone (141) :

4'-Methyl-1,2,3,4-tetrahydro furo (3',2'-5,6)xanthone (0.3 g.) and palladised charcoal (10 %; 0.2 g.), and diphenyl ether (3 ml.) was refluxed for 10 hr. The reaction mixture was filtered hot and after cooling, petroleum ether was add to the filtrate and washed several times with petroleum ether. The chloroform solution of the product was passed over a short column of alumina. It crystallised from acetic acid, m.p. 215° . Yield 0.1 g.The m.p. of (141) previously prepared by Puranik and Rajopal⁶⁴ is 216° . Analysis : Found : C, 76.35 ; H, 3.75 % C_{1.6}H_{1.0}O₃ : requires : C, 76.80 ; H, 4.00 %. I.R. spectrum : 885 cm. (furan). Chloroform Max. 256 nm (log e 4.79), 338 nm (log e

۰.

REFERENCES.

- G. Colombo, W. Montorsi and S. Salvaneschi, Arch.Sci. Med., <u>97</u>, 71 (1954); C.A., <u>48</u>, 7193 (1954).
- G. Colombo and S. Salvaneschi., Atti.Lombarda Sci.
 Medi Biol., 8, 340 (1953). C.A., 48, 7783 (1954).
- 3. W. Montorsi, S. Salvaneschi and G. Colombo., Presse. Med., <u>63</u>, 81 (1955); C.A., <u>50</u>, 4382 (1956).
- 4. J. Delphaut, M. Lanza and H. Sarles., Compt. Rend. Soc., Biol., <u>150</u>, 1407 (1956). C. A., <u>51</u>, 5989 (1957)
- 5. J. Paris, J. Vanlerenberghe and R. Godchaux., Compt. Rend. Soc. Biol., <u>151</u>, 118⁴ (1957); C.A., <u>52</u>, 12196 (1958).
- K. Uhlenbrock and K. Mulli., Arzaeimittel_Forsch., Z, 166 (1957); C.A., <u>51</u>, 9942 (1957).
- 7. J. Sobral., Compt. Rend. Soc. Biol., <u>151</u>, 810 (1957);
 C.A., <u>52</u>, 8458 (1958).
- R. Golng and H. Kempe., Arch. Inter. Pharmacedyn., <u>107</u>, 255 (1956); C.A., <u>51</u>, 68+1 (1957).
- P.I.Halonen and J. Hakkkla., Ann. Med. Exp. Biol.
 Fenniae., <u>30</u>, 118 (1952); C.A., <u>47</u>, 3463 (1953).
- G. Caccia, L. Chiampo and G. Peracchia., Arch. Ital.
 Sci. Farmacol., <u>11</u>, 45 (1961); C.A., <u>56</u>, 6605 (1962).
- 11. N.G.Polyakov, Farmakol i Toksikol., <u>24</u>, 172 (1961); C.A., <u>56</u>, 5345 (1962).
- P. Crepax and A. Volta., Studi Urbinati., Fac.Farm.,
 <u>31-4(1)</u>, 82 (1957); C.A., <u>57</u>, 1499 (1962).

- 13. I. Halonen, O. Vartiainen and E.V.Venho., Ann. Med. Exp. Biol. Fenniae., <u>29</u>, 23 (1951); C.A., <u>46</u>, 4663 (1952).
- 14. I.R.Leusen and H.E.Essex., Amer. J.Physiol., <u>172</u>, 226 (1953); C.A., <u>47</u>, 5027 (1953).
- H.J.Kuschke., Arch. Intern. Pharmoodyn., <u>106</u>, 100 (1956); C.A., <u>50</u>, 13266 (1956).
- 16. H. Jourdan., Arzneimittel_Forsch., Z, 82 (1957); C.A., <u>51</u>, 7584 (1957).
- H. Jourdan., Arzneimittel_Forsch., 8, 141 (1958);
 C.A., 53, 581 (1959).
- F. Jourdan and G. Fancon., Therapie., <u>12</u>, 927 (1957);
 C.A., <u>53</u>, 11660 (1959).
- L. Schmidt, Klin, Wochschr., <u>36</u>, 127 (1958); C.A.,
 <u>53</u>, 5507 (1959).
- 20. W. Heinmann and W. Wilbrandt., Helv. Physiol. Pharmacol. Acta., <u>12</u>, 230 (1954); C.A., <u>49</u>, 1954 (1955).
- 21. R.L.Ferrand and S.M. Horvath., Am. J. Physiol., <u>196</u>, 391 (1959); C.A., <u>53</u>, 10571 (1959).
- 22. M.J.Hans and J.J.Desmarez., Compt. Rend. Soc. Biol., <u>150</u>, 598 (1956); C.A., <u>50</u>, 15157 (1956); Compt. Rend. Soc. Biol., <u>150</u>, 1806, 1820 (1956); C.A., <u>51</u>, 11556 (1957).
- 23. J.J.Desmerez., Compt. Rend. Soc. Biol., <u>149</u>, 1291 (1955); C.A., <u>50</u>, 8017 (1956).
- 24. Ya. I. Khadzhai and G.V.Obolentseva., Farmakol-i-Toksikol., 25, 450 (1962); C.A., <u>58</u>, 1831 (1963).

- 25. C.A.Appfel, Deut. Med. Wochschr., <u>80</u>, 414 (1955);
 C.A., <u>49</u>, 9151 (1955).
- 26. Raymond_Hamet., Compt. Rend., <u>238</u>, **1**624 (1954); C.A., <u>48</u>, 12303 (1954).
- 27. K. Herz, F. Monroy and B. Vribe., Annales. Soc., Biol. Bogota., <u>5</u>, 124 (1952); C.A., <u>48</u>, 12295 (1954).
- 28. P.C.Hutterer and E. Dale.; Chem. Revs ., 48, 593 (1951).
- 29. A. Schonberg and A. Sina., J.Am.Chem.Soc., 72, 1611 (1950).
- 30. T.A.Geissman and T.G.Halsall., J.Am.Bhem.Soc., <u>73</u>, 1280 (1951).
- 31. J.R.Clarke and A.Robertson., J.Chem.Soc., 302 (1948).
- 32. R.A.Dexter, G.R.Ramage and J.A.Timson., J.Chem.Soc., 530.(1949).
- 33. O. Dann and G. Illind., Ann. Chem., <u>605</u>, 146 (1957).
- 34. V.V.S.Murti and T.R.Seshadri., Proc. Indian. Acad. Sci., <u>30 A</u>, 107 (1949).
- 35. V.V.S.Murti and T.R.Seshadri, J.Sci.Ind.Res.(India);
 8_B, 112 (1949).
- 36. R. Aneja, S.K.Mukerjee and T.R.Seshadri., J. Sci. Ind. Res. (India)., <u>17 B</u>, 382 (1958).
- 37. R. Aneja, S.K. Mukerjee and T.R. Seshadri., Chem. Ber., 93, 297 (1960).
- 38. M.M.Badami and M.B.E.Fayez., Tetrahedron., <u>11</u>, 1029-32 (1967).
- 39. K.B.Desai, K.N.Trivedi and S.Sethna., J.M.S.Univ. of Baroda., <u>IV</u>, No. 2, p. 1 (1955).

- 40. R. Aneja, S.K.Makerjee and T.R.Seshadri., Tetrahedron, 3, 230 (1958).
- 41. (Miss) N.H.Pardanani and K.N.Trivedi, Ph. D. Thesis, M.S.Univ. of Baroda, 1971.
- 42. Y.A.Shaikh, Ph. D. Thesis, M.S.Univ. of Baroda, 1971.
- 43. G.R.Ramage and C.V.Stead., J. Chem. Soc., 3602 (1953).
- 44. J.R.Clarke, G. Glaser and A. Robertson., J. Chem. Soc., 2260 (1948).
- 45. P.K.Ramchandran, A.T.Tefteller, G.O.Paulson, Ticheng, C.J.Lin and W.J. Horton., J. Org. Chem., <u>28</u>, 398 (1963).
- 46. B. Rao, G. Subramanyam and V. Venkateswarlu., J. Orgs. Chem., <u>24</u>, 685 (1959).
- 47. Y. Hatsuda and S. Kuyoma., J. Agri. Chem. Soc., Japan., 28, 989 (1954); C.A., <u>50</u>, 15522 (1956).
- 48. J.H.Birkinshaw and J.M.M.Hammady., Biochem. J., 65, 162 (1957).
- 49. J.E.Davies, J.C.Roberts and S.C. Wallwork., Chem. Ind. (London)., 178 (1956).
- 50. J.E. Davies, D.Kirkaldy and J.C. Roberts., J. Chem. Soc,
- 2169 **2169**0**(1960)**.
- 51. E. Bullock, J.C. Roberts and J.G.Underwood., J. Chem. Soc., 4179 (1962).
- 52. J.A.Knight, J.C.Roberts and J.G.Underwood., J. Chem. Soc., 5784 (1965).
- 53. E. Bullock, D.Kirkaldy, J.C.Roberts and J.G.Underwood, J.Chem.Soc., 829 (1963).

- 54. C.P.Hutterer and E. Dale., Chem.Rews., <u>48.</u>, 543 (1951).
- 55. F. Scheinmann and H. Suschitzky., ^Tetrahedron., Z, 31 (1959).
- 56. R. Adams and B. Rindfusz., J. Am. Chem. Soc., <u>41</u>, 648 (1919).
- 57. R. Aneja, S.K.Mukherjee and T.R.Seshadri., Tetrahedron, <u>2</u>, 203 (1958); <u>3</u>, 230 (1958).
- 58. E.D.Burling, A. Jefferson and F. Scheinmann., Tetrahedron letters., (12), 599 (1964).
- 59. E.D.Burling, A. Jefferson and F. Scheinmann., Tetrahedron, <u>21</u>, 2653 (1965).
- 60. J.S.H.Davies, F.Lamb and H. Suschitzky., J. Chem. Soc., 1790 (1958).
- 61. F. Lamb and H. Suschitzky., Tetrahedron., <u>5</u>, 1 (1959).
- 62. G.S.Puranik and S. Rajopal., Chem.Ber., 26, 976 (1963).
- 63. G.S.Puranik and S. Rajopal., J. Chem. Soc., 1522 (1965).
- 64. G.S.Puranik and S.Rajopal., J. Org. Chem., <u>29</u>, 1089 (1964).
- 65. A. Mustafa, M.M.Sidky, S.M.A.Zayed and F.M.Solimann., Tetrahedron., 19, 1335 (1963).
- 66. Y.S.Agasimundin and S. Rajopal., J. Org. Chem., <u>30</u>, 2084 (1965).
- 67. Royer, Rene., Lechartier, Jean P., Damerseman, Pierre. Bull. Soc., Chem. Fr., 1971 (5), 1907-10.

- 68. S.K.Mukherjee, M.M.Rao and T.R.Seshadri., Ind. J. Chem., <u>6</u>, (1), P. 1-3 (1968).
- 69. Y.A.Shaikh and K.N.Trivedi., Curr. Sci. (India), 38, No. 17, 409 (1959).
- 70. K.D.Kaufmann and W.E.Russey., J. Org. Chem., <u>27</u>, 670 (1962).
- 71. Charles Mentzer, Darius Molho and Paul Vercier., Compt. rend., <u>232</u>, 1488-99 (1951); C.A., <u>46</u>, 4003 (1952).