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Substances that flow when shear stress is applied are referred to be fluids. Gases and liquids are both

fluids. In general, fluids are split into two categories namely, Newtonian and Non-Newtonian fluids.

Newtonian fluids include substances like water, benzene, alcohol, & hexane, and many more that cor-

respond to Newton’s law of viscosity. Non-Newtonian fluids, such as pastes, gels, polymer solutions,

Carreau fluid, Williamson fluid, Micropolar fluid, etc., are those that oppose Newton’s law of viscos-

ity. The research of non-Newtonian fluids has great importance because of numerous industrial and

engineering applications. Specifically, such fluids are used in prescribed pharmaceuticals, physiology,

material processing, fiber technology, chemical and nuclear industries, oil reservoir engineering and

foodstuffs. Examples of such fluids are shampoos, apple sauce, ketchup, blood at low shear rate, poly-

mer solutions, paints, food products, milk, coating of wires, grease, crystal growth, and many others.

The study of electrically conducting fluid flow in the presence of magnetic field is known as magne-

tohydrodynamics (MHD). This includes liquid metals like gallium, mercury, and sodium in addition to

molten iron. Petroleum, chemical, and metallurgical processing industries provide as the best examples

of the significance of magnetohydrodynamic (MHD) fluid flow over a deforming body. Additional real-

world applications include surface cooling in technology, wind-up roll processes, and polymer film. The

study of magnetohydrodynamics has advanced significantly in the last few decades as a result of Hart-

mann’s ground-breaking work [1] on liquid metal duct flows in the presence of an external magnetic

field.

Entropy is a measure of molecular disorder or randomness. In the current time, one of main concerns

of engineers and researchers is to invent the procedures which control the consumption of proficient en-

ergy. In the field of thermal engineering, the key objective is to achieve the maximum efficiency of

devices and with the minimum loss of heat, friction and dissipation during the mechanical processes.

The study of entropy generation minimization has gained significant attention in various energy in-

volving problems which include, thermal energy, cooling of the modern electronic system, geothermal

energy system, and solar power collectors etc. Turkyilmazoglu [2] considered MHD fluid flow. Kataria

and Mittal [3] deals with MHD fluid flow in the presence of thermal radiation, whereas Kataria et al. [4]

deals with MHD Micropolar fluid. Rashidi et al. [5] discussed MHD fluid flow over vertical stretching

sheet in the presence of buoyancy effects. Abel and Mahesha [6] scrutinized effect of heat transfer in

MHD viscoelastic fluid flow. Rashidi et al. [7] explored entropy generation in steady MHD fluid flow.

Das et al. [8] discussed entropy analysis of MHD fluid flow over stretching sheet. Above literature lack

vital conditions like entropy optimization, viscous dissipation, joule heating, heat generation and non-

linear radiation (which are useful in real world applications) are carried out in work done by Kataria

and Mistry [32] and Kataria et al. [33].

The diverse applications of non-Newtonian fluids in engineering and manufacturing processes have

recently drawn researchers’ attention. These fluids have the characteristic that the connection between
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stress and deformation rate is nonlinear. Molten polymers, pulps, and Chyme are examples of this

type of fluid. Due to its many applications in industry, including the extrusion of polymer sheets,

emulsion-coated sheets like photographic films, solutions and melts of high molecular weight polymers,

etc. Williamson [9] initially introduced Williamson fluid model in his groundbreaking study on the flow

of pseudo-plastic materials. He created a model equation to describe the movement of pseudo-plastic

fluids, and an experiment to test this theory. Williamson fluid flow over a stretching surface was investi-

gated by Shah et al. [10]. Anantha Kumar et al. [11] explored time-independent MHD Williamson fluid

flow. Variable viscosity, chemical reactions, Soret and Dufour effects play significant role in the study of

Williamson fluids. We have included these in Chapters 4 and 7.

Carreau fluid model is another category of non-Newtonian fluids. Such a model has applications in

manufacturing processes such as aqueous, and melts. The shear thickening and shear thinning prop-

erties of many non-Newtonian fluids are also described by this model. Many scholars have dedicated

their effort to explore the properties of such models due to the wide range of applications of the Carreau

model in technological processes. The behavior of polymer suspensions in many flow issues is com-

patible with the Carreau fluid. It is an example of a pure viscous fluid whose viscosity varies with the

rate of deformation. The fluid viscosity is based on the shear rate in a model created by Carreau et al.

[12]. Carreau fluid flow with convective condition addressed by Madhu et al. [13]. Patel [14]found that

heat generation have an effect on MHD Carreau fluid flow in a porous media. The effects of variable

viscosity on MHD Carreau fluid flow were investigated by Abbas et al. [15]. We have included non

linear stretch, mass and energy fluxes due to the temperature and concentration gradients in the study

of Carreau fluid in Chapter 5.

Micropolar fluids are fluids with microstructure and asymmetrical stress tensor. Physically, they

represent fluids consisting of randomly oriented particles suspended in a viscous medium. These types

of fluids are used in analyzing liquid crystals, fluid flowing in brain, lubricants and the flow of colloidal

suspensions. The theory of Micropolar fluids was developed by Eringen [16, 17]. The comprehensive

literature on Micropolar fluids and their applications were presented by Das [18] and Narayana et al.

[19]. Chaudhary and Jha [20] examined MHD Micropolar fluid flow past a vertical plate. Later, Waqas

et al. [21] found effect of radiation on Micropolar liquid. To apply this model efficiently, characteristics

like unsteady behavior, chemical reaction, electric field and viscous dissipation need to be involved in

the study. Kataria and Mistry [36] and Kataria et al. [37] have taken care of these aspects.

To find the precise solution, numerous numerical methods have been developed. However, because

of various limitations, scientists have looked at alternative methodologies. Among these techniques,

the Homotopy Analysis Method (HAM) developed by Liao [22] is one of the most effective techniques

for obtaining series solutions of various strongly nonlinear equations, including coupled, decoupled,

homogeneous, and non-homogeneous equations. It can give us a straightforward method to ensure the

2



convergence of solution series and yield better results than other techniques developed by Abumandour

et al. [24], Elmaboud and Abdelsalam [25], Kataria and Mittal [26], Li et al. [27]. Researchers have

recently started to find answers to a variety of fluid flow problems (Daniel [28], Hayat et al. [29], Patel

[30]), using HAM .

This thesis consists of eight chapters.

Chapter 1

Fundamentals and applications of MHD fluid flow, mathematical models of Williamson fluid, Carreau

fluid, and Micropolar fluids effects of heat and mass transfer, radiation, heat generation and absorption,

Joule heating, viscous dissipation, Soret and Dufour effects, boundary conditions like slip condition and

convective boundary conditions, linear and nonlinear stretching sheets are all covered in this Chapter.

A review of pertinent literature has been done.

Chapter 2:

Entropy optimized MHD fluid flow over a vertical stretching sheet

Entropy optimization is used to enhance the system performance. Entropy generation is caused due to

heat fluxes, Joule heating and dissipation etc. To make the systems for good productivity we decrease

the entropy optimization of the system. MHD fluid flow research is important because it has numerous

engineering applications. For example, slurry flows, industrial oils, diluted polymer solutions.

In chapter 2, effects of magnetic field and radiation are studied on Entropy optimized MHD fluid flow

in presence of joule heating, heat generation/absorption and viscous dissipation impact with slip con-

dition and convective boundary condition. Stretching sheet velocity in the direction of x is Uw(x) = ax,

with initial stretching rate a > 0. Magnetic field B = B0 is applied in the perpendicular direction of

the flow. The equations which are governed for all these assumptions, are derived using Boussinesq’s

approximation. They are as follows.

∂u

∂x
+
∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σB2

0

ρ
u+ gβT (T − T∞), (2)

ρCp

(
u
∂T

∂x
+ v

∂T

∂y

)
= κ

∂2T

∂y2
+ µ

(
∂u

∂y

)2

+ σB2
0u

2 +Q∗ (T − T∞)− ∂qr
∂y

, (3)
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with boundary conditions

u = Uw + L
∂u

∂y
, v = vw, − κ

∂T

∂y
= hf (Tw − T ) at y = 0. (4)

u→ 0, T → T∞ as y → ∞. (5)

where, velocity components (u, v) in the ways (x, y), respectively, we have an injection for vw (x) < 0

and suction for vw (x) > 0.

Radiative heat flux [31] is:

qr = −16σ∗

3k∗
T 3
∞
∂T

∂y
, (6)

The similarity variable is defined as η =

√
a

ν
y and the stream function is defined as ψ =

√
aν xf (η).

From η and ψ, we get

u =
∂ψ

∂y
= axf ′ (η) , v = −∂ψ

∂x
= −

√
aνf (η) , θ (η) =

T − T∞
Tw − T∞

, (7)

Continuity equation (1) is satisfied. Equations (2)-(5) will reduced in the following form:

f ′′′ +GrT θ + ff ′′ − (f ′)
2 −Mf ′ = 0, (8)(

1 +
4

3
Rd

)
θ′′ + Prfθ′ +Brf ′′f ′′ +MBrf ′f ′ + Prβθ = 0, (9)

with

f (η) = S, f ′ (η) = 1 + γf ′′ (η) , θ′ (η) = −Bi (1− θ (η)) , at η = 0,

f ′ (η) → 0, θ (η) → 0, as η → ∞, (10)

where Thermal Grashof number GrT =
gβT (Tw − T∞)

a2x
, Magnetic parameter M =

σB2
0

aρ
, Prandtl num-

ber Pr =
µCp

κ
, Radiation parameter Rd =

4σ∗T 3
∞

3k∗κ
, Suction/Injection parameter S = − vw√

aν
, Velocity

slip parameter γ = L

√
a

ν
, Eckert number Ec =

U2
w

Cp(Tw − T∞)
, Heat generation/absorption coefficient

β =
Q∗

aρCp
, Biot number Bi =

√
ν

a

hf
κ

and Brinkman number Br = PrEc.

Velocity gradientCfx =
τw
ρU2

w

, where shear stress τw = µ

(
∂u

∂y

)
y=0

then Skin friction factorCfxRe
1
2
x =

f ′′ (0), and temperature gradient Nux =
xqw

κ (Tw − T∞)
, where heat flux qw = −κ

(
∂T

∂y

)
y=0

then Nusselt

number NuxRe
− 1

2
x = −

(
1 +

4

3
Rd

)
θ′(0), where local Reynold number Rex =

xUw

ν
.

The local entropy generation rate is defined as

SG =
κ

T 2
∞

(
1 +

16σ∗T 3
∞

3κk∗

)(
∂T

∂y

)2

+
µ

T∞

(
∂u

∂y

)2

+
σB2

0

T∞
u2, (11)
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Entropy generation rate is given by

NG = α1

(
1 +

4

3
Rd

)
θ′

2

+Brf ′′
2

+MBrf ′
2

. (12)

Bejan number =
Heat and mass transfer entropy generation

Total entropy generation

Be =

α1

(
1 +

4

3
Rd

)
θ′

2

α1

(
1 +

4

3
Rd

)
θ′2 +Brf ′′2 +MBrf ′2

(13)

where NG =
T∞νSG

aκ(Tw − T∞)
denotes entropy generation rate, α1 =

Tw
T∞

− 1 is temperature difference

parameter.

Method of Homotopy Analysis

Homotopy method is a basic concept of topology. Liao [22] proposed HAM is used in Equations (8)-(9)

with boundary conditions (10). Initial guesses f0 (η), θ0 (η) and auxiliary linear operators Lf , Lθ for the

HAM solution can be chosen as

f0 (η) = S +
1

1 + γ

(
1− e−η

)
, θ0 (η) =

Bi

1 +Bi
e−η, (14)

Lf =
∂3f

∂η3
− ∂f

∂η
,Lθ =

∂2θ

∂η2
+
∂θ

∂η
, (15)

with Lf (k1 + k2e
η + k3e

−η) = 0, Lθ (k4 + k5e
−η) = 0, where k1, k2, . . . ., k5 are arbitrary constants.

Zero-th order problems of deformation

The following is the problem of zeroth order deformation:

(1− q)Lf [F (η; q)− f0 (η)] = qℏfNf [F (η; q)] ,

(1− q)Lθ [Θ (η; q)− θ0 (η)] = qℏθNθ [Θ (η; q)] ,

 (16)

The following is a list of nonlinear operators:

Nf [F (η; q)] =
∂3F

∂η3
+ F

∂2F

∂η2
−

{
∂F

∂η

}2

−M
∂F

∂η
+GrTΘ, (17)

Nθ [Θ (η; q)] =

(
1 +

4

3
Rd

)
∂2Θ

∂η2
+ PrF

∂Θ

∂η
+Br

(
∂2F

∂η2

)2

+MBr

(
∂F

∂η

)2

+ PrβΘ, (18)

Boundary conditions subject to:

F (0; q) = S, F ′(0; q) = 1 + γF ′′(0; q), Θ′(0; q) = −Bi(1−Θ(0; q)), F ′(+∞; q) = 0, Θ(+∞; q) = 0 (19)
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where F and Θ are unknown functions in terms of η and q, non-zero auxiliary parameters ℏf and ℏθ,

non-linear operators Nf and Nθ. Furthermore where, embedding parameter q ∈ (0, 1).

F (η; 0) = f0 (η) , F (η; 1) = f (η) , (20)

Θ(η; 0) = θ0 (η) ,Θ(η; 1) = θ (η) . (21)

If q varies from 0 to 1 then, F , Θ will be varies from f0 (η), θ0 (η) to f (η), θ (η). So one can obtain:

F (η; q) = f0 (η) +

∞∑
i=1

fi (η) q
i, (22)

Θ(η; q) = θ0 (η) +

∞∑
i=1

θi (η) q
i, (23)

where

fi (η) =
1

i!

∂if(η; q)

∂ηi

∣∣∣∣
q=0

, (24)

θi (η) =
1

i!

∂iθ(η; q)

∂ηi

∣∣∣∣
q=0

, (25)

here ℏf and ℏθ are very important for the convergence of the series. If the non-zero auxiliary parameters

are chosen in such a way that equations (22) and (23) converges at q = 1. Thus, the following can be

obtained:

F (η; q) = f0 (η) +

∞∑
i=1

fi (η) , (26)

Θ(η; q) = θ0 (η) +

∞∑
i=1

θi (η) , (27)

i-th order deformation equation

The deformation equations in ith order can be presented in the form

Lf [fi (η)− χifi−1 (η)] = ℏfRf,i(η), (28)

Lθ [θi (η)− χiθi−1 (η)] = ℏθRθ,i (η) , (29)

Under the conditions of the boundary

fi(0) = 0, f ′i(0) = γf ′′i (0), θ
′
i(0) = Biθi(0), f

′
i(+∞) = 0, θi(+∞) = 0. (30)

Where,

Rf,i (η) = f ′′′i−1 +

i−1∑
k=0

fkf
′′
i−1−k −

i−1∑
k=0

f ′kf
′
i−1−k −Mf ′i−1 +GrT θi−1, (31)
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Rθ,i (η) =

(
1 +

4

3
Rd

)
θ′′i−1 + Pr

i−1∑
k=0

fkθ
′
i−1−k

+Br

i−1∑
k=0

f ′′k f
′′
i−1−k +MBr

i−1∑
k=0

f ′kf
′
i−1−k + Prβθi−1, (32)

with

χi =

0, i ≤ 1

1, i ≥ 1
(33)

The general solutions fi, θi comprising the special solution f∗i , θ∗i are given by fi (η) = f∗i (η) + k1 +

k2e
η + k3e

−η, θi (η) = θ∗i (η) + k4 + k5e
−η . where the constants kj (j = 1, 2, . . . , 5) can be found by the

boundary conditions.

Convergence analysis

Solutions for HAMs are highly dependent on values for auxiliary parameters ℏf and ℏθ that influence

convergence. As a result, the figure show corresponding ℏ-curve. For the values ℏf = −0.94, ℏθ = −0.47,

we get convergence of the solution [23].

Effects of velocity slip parameter, Radiation parameter, Prandtl number and Magnetic parameter on

velocity, temperature and entropy generation rate are perceived through various graphs. For the stretch-

ing sheet, expression of , Nusselt number and Bejan number are discussed through graphs and tabular

form.

This Result is published in Heat transfer (Wiley) (Scopus) (Ref.[32]).

Chapter 3:

Effect of nonlinear radiation on MHD fluid flow considering mass

transfer

Mass transfer phenomena is found everywhere in nature. The transport of one component in a mixture

from a region of higher concentration to one of lower concentration is called mass transfer. Mass trans-

fer finds application in industrial and chemical engineering processes. Such a flow caused by density

difference which in turn caused by concentration difference is known as mass transfer flow. Some exam-

ples of mass transfer flow are evaporation of water from pond, lake, water reservoir to the atmosphere,

separation of chemical species in distillation columns, the diffusion of impurities in rivers, oceans, etc.
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In processes comprising high temperature like polymer processes, nuclear power plants, glass produc-

tion, gas turbines etc. radiation contributes an important role. So, above work is extended in Chapter 3,

considering mass transfer and nonlinear radiation.

ρCp

(
u
∂T

∂x
+ v

∂T

∂y

)
= κ

∂2T

∂y2
+ µ

(
∂u

∂y

)2

+ σB2
0u

2 +Q∗ (T − T∞)− ∂qr
∂y

, (34)

u
∂C

∂x
+ v

∂C

∂y
= DM

∂2C

∂y2
, (35)

with boundary conditions

u = Uw + USlip, v = vw, − κ
∂T

∂y
= hf (Tw − T ) , C = Cw at y = 0. (36)

u→ 0, T → T∞ C → C∞ as y → ∞. (37)

Nonlinear radiation is given by Rosseland approximation [31]

qr = −16σ∗T 3

3k∗
∂T

∂y
, (38)

Solution is obtained using HAM and discussed in detail. Effect of Temperature ratio parameter, Slip

parameter, Schmidt number on velocity, temperature and concentration are discussed through graphs.

effect of Diffusion parameter and Magnetic parameter on rate of entropy generation and Bejan number

are explained through graphs. factor, Nusselt number and Sherwood number are calculated in tables.

Results of Chapter 3 are published in International Journal of Ambient Energy (Taylor and Fransis)

(Scopus) (Ref[33]).

Chapter 4:

Soret and Dufour impact on MHD Williamson fluid flow with varying

viscosity

Williamson fluid is characterized as a non-Newtonian fluid with shear thinning property i.e., viscos-

ity decreases with increasing rate of shear stress. Chyme in small intestine is one of the example of

Williamson fluid. The viscosity of the fluid mainly depends upon temperature of the fluid along with

fluid nature. At high temperature, the viscosity cannot be considered as constant; instead, it should be a

temperature dependent variable. The assumption of constant viscosity leads to measurable inaccuracies

while calculating the surface calculating factors. In the next Chapter 4, MHD Williamson fluid flow with

varying viscosity is considered.

It shows incompressible MHD Williamson fluid flow past a stretching sheet. It is assumed that the
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sheet is stretching with the plane y = 0 and that the flow is constrained to y > 0. In the scenario

where a > 0 is constant and the x-axis is estimated along the extending surface, with stretching velocity

u(x) = ax. A uniform magnetic field that is applied perpendicular to an expanding sheet.

The governing equations for Williamson fluid are:

∂u

∂x
+
∂v

∂y
= 0, (39)

u
∂u

∂x
+ v

∂v

∂y
=

1

ρ

∂

∂y

(
µ (T )

∂u

∂y

)
+

Γ√
2ρ

∂

∂y

[
µ (T )

(
∂u

∂y

)2
]
− u

σB2

ρ
+ gβC(C − C∞) + gβT (T − T∞),

(40)

ρCp

(
u
∂T

∂x
+ v

∂T

∂y

)
= κ

∂2T

∂y2
+
ρDMKT

Cs

∂2C

∂y2
+Q∗(T − T∞)− ∂qr

∂y
, (41)

u
∂C

∂x
+ v

∂C

∂y
=
DMKT

Tm

∂2T

∂y2
+DM

∂2C

∂y2
, (42)

with

u = Uw = ax, v = 0, C = Cw, T = Tw at y = 0, (43)

u→ 0, C → C∞, T → T∞ at y → ∞. (44)

The temperature dependent viscosity by Ajayi et al. [34] is

µ (T ) = µ∗ [1 + b (Tw − T )] , where b > 0, (45)

HAM is employed to find series solution. Convergence of the series solution is discussed through table.

For validity purpose, similarity of the current outcomes are compared with the available results. Effects

of Variable viscosity parameter, Weissenberg parameter, Heat generation/absorption coefficient, Soret

number and Dufour number are explained through graphs. Physical measures are illustrated in table.

Results of Chapter 4 are communicated.

Chapter 5:

MHD Carreau fluid flow over nonlinear stretching sheet

The non-Newtonian nature of blood in small arteries is analyzed mathematically by considering the

blood as Carreau fluid. Stretching sheet assists heat and mass transfer flow, which has wide application

in polymer industry, lamination, fiber spinning, and so forth.

In this paper, two-dimensional steady, incompressible MHD Carreau fluid flow over a shrinking or

stretching sheet is considered. Stretching/shrinking sheet is taken along x axis. Magnetic field B =

B0x
m−1

2 is implemented perpendicular to the surface, where Uw(x) = a∗xm and Ue(x) = b∗xm. Non-
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linear thermal radiation, Soret and Dufour effects are taken into account.

∂u

∂x
+
∂v

∂y
= 0, (46)

u
∂u

∂x
+ v

∂u

∂y
− Ue

dUe

dx
− 1

ρ

∂

∂y

(
µ∗(T )

∂u

∂y

)
− 3

µ∗(T )

ρ

(
pi − 1

2

)
Λ2

(
∂u

∂y

)2
∂2u

∂y2

− σB2

ρ
(Ue − u)− 1

ρ

(
pi − 1

2

)
Λ2 ∂µ

∗(T )

∂y

(
∂u

∂y

)3

= 0, (47)

u
∂T

∂x
+ v

∂T

∂y
+

1

ρCp

∂qr
∂y

− κ

ρCp

∂2T

∂y2
− DMKT

CpCs

∂2C

∂y2
= 0, (48)

u
∂C

∂x
+ v

∂C

∂y
− DMKT

Tm

∂2T

∂y2
−DM

∂2C

∂y2
= 0, (49)

to the boundary conditions

u = Uw (x) , v = vw (x) , C = Cw,
∂T

∂y
= −q0

κ
x

m−1
2 , at y = 0,

u = Ue (x) , C → C∞, T → T∞, as y → ∞.

 (50)

Adegbie et al. [35] provide a mathematical model of temperature dependent viscosity:

µ (T ) = µ∗ [1 + h1 (T∞ − T )] , (51)

where, h1 is constant and its value depends on the fluid. Using HAM, the solutions of the present

work are found. Effects of nonlinear parameter, Variable viscosity parameter, Magnetic parameter and

Schmidt number on velocity, temperature and concentration profiles are discussed. For validity pur-

pose, present results are compared with the previous one. factor, Nusselt number and Sherwood num-

ber are explained through graphs.

This work is accepted in International Journal of Applied and Computational Mathematics (Springer-

Nature) (Scopus).

Chapter 6:

Unsteady MHD flow of a Micropolar fluid over a stretching sheet

Reciprocating engines, pressure exchangers, hydraulic rams and ocean wave machine are some of the

application of unsteady flow. A few representative fields of interest in which combined heat and mass

transfer with chemical reaction effect plays an important role, are design of chemical processing equip-

ment, formation and dispersion of fog, distribution of temperature and moisture over agricultural fields

and groves of fruit trees, damage of crops due to freezing, food processing and cooling towers.
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Consider an unsteady two-dimensional MHD flow of an incompressible Micropolar fluid, heat and

mass transfer over a vertical stretching sheet. The sheet is assumed to emerge vertically in the upward

direction from a narrow slot with velocity

Uw (x, t) =
ax

1− αt
, (52)

where both a and α are positive constants with dimension per unit time. We measure the positive x

direction along the stretching sheet with the slot as the origin. We then measure the positive y coordinate

perpendicular to the sheet in the outward direction toward the fluid flow. The surface temperature Tw

and concentration Cw of the stretching sheet vary with the distance x from the sheet and time t as

Tw (x, t) = T∞ +
bx

(1− αt)
2 , Cw (x, t) = C∞ +

cx

(1− αt)
2 , (53)

where b, c are constants with dimension of temperature and concentration, respectively, over length.

It is noted that the expressions for Uw(x, t), Tw(x, t), and Cw(x, t) are valid only for t < α−1. We also

remark that the sheet which is fixed at the origin is stretched by applying a force in the x-direction and

the effective stretching rate a/(1 − αt) increases with time. The sheet temperature and concentration

increase (reduce) if b and c are positive (negative), respectively. We assume that the radiation effect is

significant in this study. The fluid properties are taken to be constant except for density variation with

temperature and concentration in the buoyancy terms. Under those assumptions and the Boussinesq

approximations, the governing boundary layer equations are given as:

∂u

∂x
+
∂v

∂y
= 0, (54)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

(
µ+ k

ρ

)
∂2u

∂y2
+
k

ρ

∂N

∂y
+ gβT (T − T∞) + gβC (C − C∞)− σB2u

ρ
, (55)

∂N

∂t
+ u

∂N

∂x
+ v

∂N

∂y
=
γ∗

ρj

∂2N

∂y2
− k

ρj

(
2N +

∂u

∂y

)
, (56)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

κ

ρCp

(
∂2T

∂y2

)
− 1

ρCP

∂qr
∂y

+

(
µ+ k

ρCp

)(
∂u

∂y

)2

, (57)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= DM

∂2C

∂y2
+ κc (C − C∞) , (58)

with the appropriate boundary conditions:

u = Uw (x, t) , v = 0, N = 0, T = Tw (x, t) , C = Cw (x, t) at y = 0, (59)

u→ 0, N → 0, T → T∞ , C → C∞ as → ∞. (60)
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Results in the form of graphs and tables can be found by homotopy analysis method. Effect of

unsteadiness parameter, Micropolar parameter and Chemical reaction parameter on velocity, angular

velocity, temperature and concentration are explained throgh graphs. Physical attributes are discussed

through graphs.

This work is published in Journal of Physics (Scopus) (Ref[36]).

Chapter 7: Entropy optimized unsteady MHD Williamson fluid flow

considering viscous dissipation effects

Viscous dissipation is of interest for many applications, for examples significant temperature rises are

observed in polymer processing flows such as injection molding or extrusion at high rates. Aerodynam-

ics heating in the thin boundary layer around high speed aircraft raises the temperature of the skin. Due

to numerous applications of convective boundary conditions in technology, including thermal energy

storage, petroleum processing, material drying etc, we considered convective boundary conditions in

this chapter.

In the next chapter 7, two dimensional, unsteady flow of an incompressible Williamson fluid across

a stretching sheet with joule heating, nonlinear radiation and viscous dissipation have been considered.

Entropy generation rate is discussed here. The slip condition and convective boundary conditions have

been addressed. In this chapter, the vertical axis was chosen transverse to the surface, and we decided

to use the cartesian system to measure the sheet along the x, y, and x axes that were chosen next to

the stretching sheet. Stretching velocity is Uw(x, t) = bx
1−αt , where b is the rate of stretching sheet with

respect to x axis where αt is a positive constant according to case αt < 1. The magnetic field’s strength is

B = B0/
√
1− αt and is applied in the direction of the positive y axis. Comparing the magnetic Reynolds

number to the induced magnetic field, it is very small.

Governing equations for Williamson fluid are as follows:

∂u

∂x
+
∂v

∂y
= 0, (61)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+
√
2Γν

∂2u

∂y2
∂u

∂y
− σB2

ρ
u+ gβC(C − C∞) + gβT (T − T∞), (62)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

k

ρCp

∂2T

∂y2
− 1

ρCp

∂qr
∂y

+
σB2

ρCp
u2 +

µ

ρCp

(
∂u

∂y

)2

, (63)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
+ kc(C − C∞), (64)

with
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u = Uw + USlip, v = vw =
v0√
1− αt

, −κ∂T
∂y

= hft(Tw − T ), −DM
∂C

∂y
= hfc(Cw − C), at y = 0, (65)

u→ 0, T → T∞, C → C∞, at y → ∞. (66)

where, Uslip = α∗µ∂u
∂y .

HAM used to find solution of this problem. Impact of Eckert number, Unsteadiness parameter, Ther-

mal Biot number and Solutal Biot number are discussed via graphs. For Diffusion parameter, Magnetic

parameter rate of entropy generation explained. Convergence of series solution discussed numerically.

Present results are compared with the available results for validity of HAM. factor, Nusselt number and

Sherwood number are calculated for different values of pertinent parameters.

Results of this chapter is communicated.

Chapter 8: EMHD fluid flow with slip effects

Electromagnetohydrodynamic (EMHD) is the area that concerns the study of dynamics of electrically

conducting fluids under the influence of magnetic and electric fields. EMHD has raised quite an inter-

est over the years due to its versatile application in geophysics, engineering, biomedical engineering,

magnetic drug targeting, and many others. The non-adherence of the fluid to a solid boundary, known

as velocity slip, occurs under certain circumstances. Fluids displaying slip are essential for technologies

such as internal cavities and in the artificial cardiac valve polishing.

In the next chapter, two dimensional incompressible Micropolar fluid flow through a horizontal sheet

is considered. Velocity of the stretching sheet is taken as u = ax + USlip. A magnetic fleld of strength

B is normally applied with the conjecture of lower Reynolds number, so that the induced magnetic

field may be ignored. Viscous dissipation and Joule heating and non-linear thermal radiation effects are

accounted. The surface of the stretching plate is in contact with another hot plate of temperature Tw and

concentration Cw with hft and hfc are the heat transfer coefficient and mass transfer coefficient. The

volume of particle concentration and the temperature of the Micropolar fluid far away from the plate is

supposed to be C∞ and T∞ respectively.

∂u

∂x
+
∂v

∂y
= 0, (67)

u
∂u

∂x
+ v

∂u

∂y
=

(
µ+ k

ρ

)
∂2u

∂y2
+
k

ρ

∂G

∂y
+
σ

ρ

(
E0B0 −B2

0u
)
, (68)

u
∂G

∂x
+ v

∂G

∂y
=
γ∗

ρj

∂2G

∂y2
− k

ρj

(
2G+

∂u

∂y

)
, (69)

u
∂T

∂x
+ v

∂T

∂y
=

κ

ρCP

(
∂2T

∂y2

)
+

(uB0 − E0)
2
σ

ρCP
− 1

ρCP

∂qr
∂y

+

(
µ+ k

ρCp

)(
∂u

∂y

)2

, (70)
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u
∂C

∂x
+ v

∂C

∂y
= DM

∂2C

∂y2
, (71)

with

u = Uw (x) + Uslip, v = vw, G = −n∂u
∂y
,−κ∂T

∂y
= hft (Tw − T ) , −D∂C

∂y
= hfc (Cw − C) at y = 0,

u (∞) = G (∞) = 0, T (∞) = T∞, C (∞) = C∞.

(72)

where Uw (x) = ax and Uslip = α∗
[
(µ+ k)

∂u

∂y
+ kG

]
.

Using HAM, solution of the problem found. Effect of Electric parameter, Slip parameter and Material

parameter on velocity, angular velocity, temperature and concentration are explained. Convergence of

series solution explained through graphs. Physical attributes are discussed through graphs and tables.

Results of this chapter is published in Heat transfer (Wiley) (Scopus) (Ref. [37]).
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