List of Figures

1.1: The nuclear phenomenon takes place based on the impact factor of the incoming projectile	э.
Schematic representation of involved processes based on impact factor	3
1.2: Different stages of nuclear interaction when the projectile is bombarded on the targe	et
nucleus.	4
1.3: Schematic presentation of a transfer pick-up reaction	
1.4 : Schematic presentation of a transfer stripping reaction	6
1.5: Schematic presentation of a transfer knock-out reaction	6
1.6: Schematic representation of the formation and decay of Compound Nucleus (CN)8	
1.7: Energy spectra for charge particles and neutrons. Figure is taken from J. S. Lilley, Nuclear Physics – Principles and applications (John Wiley and Sons Ltd	9
1.8: Differential cross section for an outgoing particle for direct reaction and decay of compound nucleus)
1.9: Cluster structure in some weakly bound stable and unstable nuclei	1
1.10: The detailing of the process when weakly bound projectile nuclei interact with target nuclei. A typical example taken over here is WBP ⁶ Li (α +d)	3
1.11: Part of Segre chart containing weakly bound category of nuclei	3
1.12 : Typical example of TA behavior for system ${}^{16}O+{}^{208}Pb$	7
1.13: Typical example of BTA behavior for system $^{6}Li + ^{208}Pb$	7
2.1: Schematic block diagram of a typical pellletron accelerator tank	8
2.2: Deposition of ⁹² Mo during the run and internal view of the chamber after deposition respectively	2
2.3: Floating off the thin film and taking on SS target frame for target fabrication	

2.4: Schematic illusion of ΔE -E telescope detector setup. ΔE is the thinner solid state/gas detector
2.5: Schematic block diagram of electronic setup corresponding to the experimental arrangement in the thesis
2.6: Illustrative example of the form of Wood-Saxon potential
2.7: There is integration over two densities and therefore it is called the double folding model
2.8: The liner segments of W(r, E). The figure is taken from reference
2.9: Represent the coordinates of arrangement and now the three body becomes two body48
3.1: Photograph of mounting arrangement for detector telescopes (T1, T2, T3, and T4), Monitors
(M1, M2), target ladder, and Faraday cup (outside the chamber)55
3.2: Particle ΔE -(E+ ΔE) spectrum at E _{lab} =25.7MeV, θ_{lab} =40°, for the system ⁶ Li+ ⁵¹ V56
3.3: Elastic scattering angular distribution data fitting through Woods –Saxon potential
3.4: The sensitivity radius deduced from optical model analysis for the imaginary part for the
system ⁶ Li+ ⁵¹ V at energies a) 14 MeV b) 12 MeV
3.5: Elastic scattering angular distribution data fitting through the microscopic double folding
model
3.6: Left panel: Real and imaginary potentials at sensitivity radius R=9.4 fm using optical model.
dynamic polarization potential (DPP) (ΔV , ΔW) and bare + DPP, these calculations are obtained
from CDCC calculations. Right Panel: Real (N_R) and imaginary (N_I) normalization factors from
the microscopic double folding model

3.7 : Result of CDCC calculation for real (ΔV) and imaginary (ΔW) polarization potential
around sensitivity radius (9.4 fm)65
3.8: Real and Imaginary normalization factors for systems
3.9: (a) Reduced reaction cross section for targets from different mass regions with ${}^{6}Li$. (b) The
ratio of systematic radius R_{sys}^{i} = 1.12 $A_{i}^{1/3}$ – 0.96 $A_{i}^{-1/3}$ + 3.75 fm to spherical radius R_{SP}^{i} = 1.3
$A_i^{1/3}$ fm is given in the inset
3.10: A systematic reaction cross section for a variety of projectile categories viz. strongly
bound, Weakly bound, and rare ion beam with target ⁵¹ V
4.1: Particle ΔE -(E+ ΔE) spectrum at E _{lab} =19.7MeV, θ_{lab} =30°, for the system ⁶ Li+ ⁵¹ V77
4.4: Energy integrated angular distribution of α -particles at various energies (a) 25.7 MeV, (b)
22.7 MeV, (c) 19.7 MeV, and (d) 13.6 MeV at ⁶ Li+ ⁵¹ V
4.5: Schematic diagram of coupling states included for Coupled Reaction Channel Calculations (CRC) for 1-n transfer
4.6: Schematic diagram of coupling states included for Coupled Reaction Channel Calculations (CRC) for 1-p transfer
4.7: The contribution of several possible reaction channels to direct α production viz. non-
capture breakup, 1 p transfer , 1 n transfer , 1 d transfer , transfer + Non-capture breakup
(NCBU), and Incomplete fusion +transfer +NCBU
4.8: Experimentally deduced direct α - particle cross section for 6Li with various targets90
4.9: A ratio showing relative production of α - production cross section to deuteron production
cross section for various targets around the Coulomb barrier

5.1: Schematic diagram of the GPSC chamber of the experimental setup for the experiment....99

5.3: An energy calibrated experimental spectra (a) for the system $^{7}\text{Li}+^{92}\text{Mo}$ at energy

5.4: Elastic scattering angular distribution data fitting through Woods –Saxon potential (WSP) and São-Paulo Potential (SPP for system ⁷Li+⁹²Mo and diamonds for system ⁷Li+¹⁰⁰Mo..... 104

5.5: The sensitivity radius deduced from optical model analysis for the real and imaginary parts for the system ⁷Li+¹⁰⁰Mo system at energies 21.5 MeV and 30 MeV respectively......105

5.8: The CDCC calculations are demonstrated with and without including breakup coupling effects for the system ⁷Li+⁹²Mo......112

5.10: A Comparative study of the experimental cross section with CDCC calculated reaction
cross section and breakup cross section for ⁷ Li+ ^{92,100} Mo systems
.5.11: The comparative plot for total fusion cross sections (σ_{fus}) calculated by CCFULL and the
total reaction cross sections (σ_R) for the systems $^7Li+^{92}Mo$, $^7Li+^{,100}Mo$, and $^6Li+^{,100}Mo$
5.12: Reduced reaction cross section for targets from lighter to heavy mass regions with ⁷ Li. 118
6.1: Schematic diagram and inner view of GPSC chamber of the experimental setup for the
experiment
6.2: Elastic scattering angular distribution data fitting through Woods –Saxon potential for
system ⁷ Li+ ¹⁰⁰ Mo
6.3: The sensitivity radius deduced from optical model analysis for the real and imaginary parts
for the system ⁶ Li+ ¹⁰⁰ Mo system at energy 23 MeV132
6.3: Real and imaginary potentials at sensitivity radius R=10.97 fm using optical model WSP
(blue solid circle)

•