List of Figures

Figure 2: BET-specific surface area of composites calcined at 650°C And hydrothermally aged at 750°C	Figure 1:	Design composition space of the composites (wt%), excluding rare earth components La and Ce; Binary composites (filled blue circles), Ternary composites (open red circles), Quaternary composites (filled red circles)	29
Al-Mg and Al-Zr supports relative to arithmetic mean of the Binaries	Figure 2:		34
content of the support	Figure 3:	Al-Mg and Al-Zr supports relative to arithmetic mean of the	35
after Hydrothermal treatment	Figure 4:		36
Figure 7: Percentage decrease in pore volume after hydrothermal aging of the supports	Figure 5:		37
of the supports	Figure 6:	Pore volume of composites calcined at 650°C	39
Figure 9: Median pore diameter (MPDA) of the supports upon hydrothermal aging	Figure 7:		ŀO
hydrothermal aging	Figure 8:	Median pore diameter of composites calcined at 650°C	41
Figure 11: Isotherms representative of composites i) not containing alumina; ii) containing alumina	Figure 9:		42
alumina; ii) containing alumina	Figure 10:	Pore Diameter Distribution of composites calcined at 650°C	42
at 650°C	Figure 11:		43
NH ₃ -TPD	Figure 12:		14
at 750°C, 4 hours	Figure 13:		16
at 650°C	Figure 14:		19
	Figure 15:		53
	Figure 16:	Trend of weight loss in DSC-TG of composites dried at 120°C	55

Figure 17(a):	MBOH conversion trend of binary composites calcined at 650°C	60
Figure 17(b):	MBOH conversion trend of ternary composites calcined at 650°C	51
Figure 17(c):	MBOH conversion trend of quaternary composites calcined at 650°C	51
Figure 18(a):	Selectivity of binary composites to acetone6	2
Figure 18(b):	Selectivity of ternary composites to acetone and acetylene6	3
Figure 18(c):	Selectivity of quaternary composites to acetone and acetylene6	3
Figure 18(d):	Trend of average selectivity to acetone of all the composite samples	4
Figure 19(a):	Selectivity of binary composites to Mbyne6	5
Figure 19(b):	Selectivity of ternary composites to Mbyne6	56
Figure 19 (c):	Selectivity of quaternary composites to Mbyne6	7
Figure 19 (d)	Average selectivity of all the composites to Mbyne6	58
Figure 20:	Average selectivity of all the composites to MiPK6	9
Figure 21:	Decay constants of composites for decomposition of MBOH7	0'
Figure 22:	Fractional molar compositions of composites plotted as increasing deactivation along X axis	' 1
Figure 23:	Comparison of BET-specific surface area of the Nickel catalysts and corresponding support	33
Figure 24:	Change in BET-specific surface area with Nickel content of the catalyst	5
Figure 25:	Pore volumes of supported Nickel metal-based catalysts8	6
Figure 26:	Change in the specific pore volume of the catalysts with Nickel content of the catalyst	7
Figure 27:	Trend of strong acidity of the catalysts and the corresponding supports used to prepare them8	8
Figure 28:	Trend of total acidity of supported Nickel catalysts and their corresponding supports9	0

Figure 29:	Trend of the acid strength of the supported Nickel catalysts91
Figure 30:	Peak maxima of low and high-temperature peaks in TPR of supported Nickel metal catalysts94
Figure 31:	Total H ₂ consumption with the breakup of consumption at low and high temperatures99
Figure 32:	Fractional reducibility of NiO of the supported metal catalysts101
Figure 33(a):	XRD pattern of 7.5%Ni-AMZ-0-89-0
Figure 33(b):	XRD pattern of 7.5%Ni-AMZ-89-0-0
Figure 33(c):	XRD pattern of 7.5%Ni-AMZ-0-0-89
Figure 34:	Specific surface area of Nickel in the supported metal catalysts
Figure 35:	Trend of the specific surface area of Nickel versus BET surface area of support used for the preparation of the catalysts
Figure 36:	Trend of the specific surface area of Nickel versus BET surface area of support used for the preparation of the catalyst with constant Nickel content (7.5wt%)
Figure 37:	Dispersion of Nickel as a function of monolayer capacity relative to Nickel content per gram catalyst109
Figure 38:	Correlation of Nickel metal area with BET surface area for catalysts with 7.5wt% and with Nickel reducibility >87%109
Figure 39:	Trend of the specific surface area of Nickel metal with the degree of reducibility of NiO
Figure 40:	Trend of Nickel metal surface area versus the degree of Nickel Reducibility
Figure 41:	Trend of crystallite size of NiO and BET-specific surface area with the composition of the support112
Figure 42:	Relation between XRD CS of NiO and median particle size determined by HRTEM
Figure 43:	Micrograph of binary Al catalyst 7.5%Ni-AMZ-89-0-0117
Figure 44:	Micrograph of binary Mg catalyst 7.5%Ni-AMZ-0-89-0117
Figure 45:	Micrograph of binary Zr catalyst 7.5%Ni-AMZ-0-0-89118

Figure 46:	Micrograph of ternary Al-Mg catalyst 7.5%Ni-AMZ-44-44-0118
Figure 47:	Micrograph of ternary Al-Mg catalyst 7.5%Ni-AMZ-29-59-0119
Figure 48:	Micrograph of ternary Al-Zr catalyst with balanced composition 7.5%Ni-AMZ-44-0-44
Figure 49:	Micrograph of ternary Al-Zr catalyst with a balanced composition 7.5%Ni-AMZ-39-0-49
Figure 50:	Micrograph of ternary Al-Zr catalyst with a balanced composition 7.5%Ni-AMZ-29-0-59
Figure 51:	Micrograph of ternary Mg-Zr catalyst with a balanced composition 7.5%Ni-AMZ-0-44-44
Figure 52:	Micrograph of the quaternary Al-rich catalyst 7.5%Ni-AMZ-44-22-22
Figure 53:	Ethanol conversion at the 2 nd hour on stream at 550°C, 600°C, 650°C, 700°C and 750°C reaction temperature for various catalysts
Figure 54(a):	Ethanol conversion at the 2 nd hour on stream and average conversion of 8 hours at 550°C reaction temperature for various catalysts
Figure 54(b):	Ethanol conversion at the 2 nd hour on stream at 600°C and 650°C reaction temperature for various catalysts
Figure 54(c):	Ethanol conversion at the 2 nd hour on stream at 700°C and 750°C reaction temperature for various catalysts140
Figure 55:	Co-relation of BET-SA and Ethanol Conversion at 550°C for various catalysts
Figure 56:	Trend of ethanol conversion at 550°C and peak temperature of reduction of Ni for various catalysts
Figure 57(a):	Trend of activity at 550°C is compared with a surface area of Ni determined by O ₂ chemisorption143
Figure 57(b):	Trend of activity at 600°C and 650°C is compared with a Surface area of Ni determined by O ₂ chemisorption143
Figure 58:	Plot of conversion of ethanol at 550°C versus median Ni(0) size of R&S catalysts determined by HRTEM144

Figure 59:	Plot of ethanol conversion in ESR at 550°C versus median Ni(0) particle size determined by HRTEM145
Figure 60:	Trend of ethanol conversion 2 nd hour on stream at 550°C versus XRD crystallite size of NiO of calcined catalysts146
Figure 61:	Plot of the yield of Hydrogen at 550°C versus XRD crystallite size of NiO in calcined catalysts
Figure 62:	Trend of Yield of H ₂ at various Temperatures for various catalysts
Figure 63:	Trend of Yield of CO at various Temperatures for various catalysts
Figure 64:	Trend of Yield of CO ₂ at various Temperatures for various catalysts
Figure 65:	Trend of H ₂ /CO molar ratio at various reaction temperature153
Figure 66:	Trend of H ₂ /CO ₂ molar ratio at various reaction temperature154
Figure 67:	Trend of H ₂ /CH ₄ molar ratio at various reaction temperature154
Figure 68:	Trend of Yield of Ethylene at various Temperatures for various catalysts
Figure 69:	Trend of Strong acidity of catalysts and corresponding Yield of Ethylene at 550°C and 750°C159
Figure 70:	Trend of the yield of CH ₄ with reaction temperature160
Figure 71:	Decay constants of different catalysts at 550°C and 750°C161
Figure 72:	Trend of Coke content of catalyst after operation at 750°C For 8 hours
Figure 73:	Trend of coke content and Strong Acidity of various catalysts167
Figure 74:	Trend of coke content of the catalysts operated at 750°C for 8 hours and decay constants for conversion of ethanol with time on stream
Figure 75:	Trend of strong acidity by NH ₃ -TPD and decay constant at 750°C
Figure 76:	Trend of Acetaldehyde Yield at various temperatures for various catalysts

Figure 77:	Trend of Acetone Yield at various temperatures for various catalysts	1
Figure 78:	Trend of Ethanol Conversion at 650°C for various catalysts	2
Figure 79:	Decay Constants of Ethanol Conversion at 650°C and 700°C for various catalysts	3
Figure 80:	Decay Constants of Ethanol Conversion operated at 8 hours and 80 hours at 650°C	4
Figure 81:	Decay Constants of Ethanol Conversion operated at 8 hours and 80 hours at 700°C	5
Figure 82:	Coke deposits for various catalysts operated at 8 hours and 80 hours at 700°C	6
Figure 83:	Average conversion of ethanol for various catalysts operated for 80 hours on stream	8
Figure 84:	Average yield of H ₂ for catalysts operated for 80 hours at 650°C and 700°C	9
Figure 85:	Average yield of CO for catalysts operated for 80 hours at 650°C and 700°C	0
Figure 86:	Average yield of CO ₂ for catalysts operated for 80 hours at 650°C and 700°C	1
Figure 87:	Trend of the H ₂ /CO molar ratio for catalysts operated for 80 hours at 650°C and 700°C	1
Figure 88:	Trend of the H ₂ /CO ₂ molar ratio for catalysts operated for 80 hours at 650°C and 700°C	2
Figure 89:	TEM of AMZ-0-89-0 a) Reduced catalyst and b) After use for ESR	3
Figure 90:	HRTEM of AMZ-44-44-0 a) Reduced catalyst and b) After use for ESR	4
Figure 91:	a) HRTEM details of 7.5% Ni-AMZ-29-59-0 and b) HRTEM details of 7.5%Ni-AMZ-44-44-0	.5
Figure 92:	HRTEM of AMZ-39-49-0 a) Reduced catalyst and b) After use for ESR	<u>,</u>
Figure 93:	Magnified HRTEM image of 7.5%Ni-AMZ-39-49-0	

	showing Herringbone structure in carbon filament	187
Figure 94:	HRTEM of AMZ-29-59-0 a) Reduced catalyst and b) After use for ESR	187
Figure 95:	HRTEM of catalyst AMZ-44-0-44 a) Reduced catalyst and b) After use for ESR.	188
Figure 96:	HRTEM of 7.5%Ni-AMZ-44-22-22 a) Reduced catalyst and b) After use for ESR.	189
Figure 97:	HRTEM of 7.5%Ni-AMZ-22-44-22 a) Reduced catalyst and b) After use for ESR	190
Figure 98:	HR-TEM of 7.5%Ni-AMZ-22-22-44 a) Reduced catalyst and b) After use for ESR.	190
Figure 99:	Trend of conversion of ethanol of the fresh catalyst and of the catalyst regenerated at 500°C	194
Figure 100:	Yield of H ₂ of the fresh catalyst and of the regenerated catalyst.	195
Figure 101:	Ethanol Conversion of Fresh and Regenerated catalyst calcined at 650°C.	196
Figure 102:	Ethanol Conversion at Different Temperature for EDR Reaction for various catalysts	214
Figure 103:	Ethanol conversion at 550°C 2 nd hour and 550°C 8 hours average	215
Figure 104:	Ethanol conversion at 600°C and 650°C for various catalysts	216
Figure 105:	CO ₂ conversion at various temperatures for EDR Reaction	217
Figure 106:	CO ₂ conversion at 550°C temperature for various catalyst	218
Figure 107:	Yield of H ₂ (mol%) at various temperature for various catalyst	219
Figure 108:	Yield of CO (mol%) at various temperature for various catalyst	221
Figure 109:	Trend of ratio of Ethanol Conversion/CO ₂ conversion at various temperature for various catalysts	223
Figure 110:	Trend of H ₂ /CO molar ratio at various temperatures for various catalysts	224

Figure 111:	Trend of H ₂ /CH ₄ molar ratio at various temperatures for various catalysts	225
Figure 112:	Trend of Yield of Ethylene at various temperatures for various catalysts	228
Figure 113:	Trend of Yield of Ethylene at 550°C and 750°C with Strong acidity of various catalysts	229
Figure 114:	Trend of Yield of Methane at various temperatures for various catalysts	230
Figure 115:	Coke formation of various catalysts operated at 750°C for 8 hours	231
Figure 116:	Comparison of coke content of spent catalysts used for short duration (8 hours) ESR and EDR runs	232
Figure 117:	Trend of Coke content and Strong acidity for various catalyst	233
Figure 118:	Trend of decay constants at 550°C and 750°C for 8 hours runs at various temperature for various catalysts	234
Figure 119:	Trend of relation between the magnitude of the decay constant and the coke content of spent catalysts operated at 750°C for 8 hours.	236
Figure 120:	Ethanol Conversion for 7.5%Ni-AMZ-44-0-44 Catalyst at 650°C and 700°C.	237
Figure 121:	CO ₂ Conversion for 7.5%Ni-AMZ-44-0-44 Catalyst at 650°C and 700°C	238
Figure 122:	Ethanol Conversion for 7.5%Ni-AMZ-22-44-22 Catalyst at 650°C and 700°C.	239
Figure 123:	CO ₂ Conversion for 7.5%Ni-AMZ-22-44-22 Catalyst at 650°C and 700°C.	239
Figure 124:	HRTEM micrograph of catalyst 7.5%Ni-AMZ-44-0-44	240
Figure 125:	HRTEM of the spent catalyst 7.5%Ni-AMZ-22-44-22	241
Figure 126:	Ethanol conversion for the fresh and regenerated 7.5%Ni-AMZ-22-44-22 catalyst	242