LUMINESCENCE STUDIES OF RARE EARTH DOPED PEROVSKITE PHOSPHORS

AN EXECUTIVE SUMMARY SUBMITTED TO

THE MAHARAJA SAYAJIRAO UNIVERSITY OF BARODA FOR THE AWARD OF THE DEGREE OF

Doctor of Philosophy IN PHYSICS

BY

DEGDA NARESHKUMAR JETHABHAI

(REGISTRATION NO: FOS/2203)

UNDER THE SUPERVISION OF

PROF. M. SRINIVAS

DEPARTMENT OF PHYSICS FACULTY OF SCIENCE THE MAHARAJA SAYAJIRAO UNIVERSITY OF BARODA VADODARA, GUJARAT-390002 FEBRUARY-2024

TABLE OF CONTENT OF THE THESIS

	Page No.
List of Figure	i
List of Table	vi
Abbreviation	viii
Chapter-1 Introduction	
1.1. Luminescence phenomenon	1
1.1.1. History	1
1.1.2. Luminescence Mechanism	2
1.1.2.1. Fluorescence	3
1.1.2.2. Phosphorescence	4
1.1.3. Luminescence Emission	5
1.1.4. Types of Luminescence	6
1.1.4.1. Photoluminescence	7
1.1.4.2. Thermoluminescence	7
1.1.4.3. Electroluminescence	8
1.1.4.4. Chemiluminescence	8
1.1.4.5. Cathodoluminescence	9
1.1.4.6. Radioluminescence	9
1.1.4.7. Bioluminescence	9
1.1.4.8. Mechanoluminescence	9
1.2. Role of the Rare Earths	10
1.3. Introduction to Perovskite	12
1.4. Luminescent Perovskites and Concerned Literature Review	14
Objectives of the Thesis	18
Thesis layout	19
Reference	21
Chapter-2 Synthesis Method and Characterizations	
2.1. Synthesis Method	25
2.1.1. Combustion Route of Synthesis	25
2.1.1.1. Merits and Demerits	26
2.2 Material Characterization Techniques	27

2.2.1. X-ray Diffraction (XRD)	27
2.2.1.1 Instrument Used to Monitor Diffraction Patterns	28
2.2.1.2 Applications of XRD	28
2.2.2 Scanning Electron Microscopy (SEM)	29
2.2.2.1 Instrument Used to SEM Micrograph Recording	29
2.2.2.2. Applications of SEM	30
2.2.3 Fourier Transform Infrared (FTIR)	30
2.2.3.1 Instrument Used to FTIR Study	30
2.2.3.2 Applications of FTIR	31
2.2.4 Photoluminescence (PL)	31
2.2.4.1 Instrument Used Photoluminescence Study	31
2.2.4.2 Applications of PL	32
2.2.5 Thermoluminescence (TL)	32
2.2.5.1 Instrument Used Thermoluminescence Glow Curve Measurer	ments 32
2.2.5.2 Applications of TL	33
Reference	34
Chapter-3 Niobate Based Double Perovskite Phosphors	
3.1. Introduction	37
3.2. Synthesis Method and Characterization Techniques	38
3.2.1. Phosphor Preparation	38
3.2.2 Characterizations	38
3.3 Results and Discussion	39
3.3.1 XRD Studies	39
3.3.2 SEM Studies	44
3.3.3 FTIR Studies	44
3.3.4 Photoluminescence Studies	46
3.3.5 Thermoluminescence Studies	61
Reference	72
Chapter-4 Vanadate Based Double Perovskite Phosphors	
4.1. Introduction	78

З			

4.2. Synthesis and Characterizations	79
4.2.1. Phosphor Preparation	79
4.2.2 Characterizations	79
4.3 Results and Discussion	80
4.3.1 XRD Studies	80
4.3.2 SEM Studies	84
4.3.3 EDAX Studies	85
4.3.4 FTIR Studies	87
4.3.5 Photoluminescence Studies	88
4.3.6 Thermoluminescence Studies After Beta Irradiation	101
4.3.7 Thermoluminescence Studies After UV Irradiation	109
Reference	114
Chapter-5 Tungstate Based Double Perovskite Phosphors	
5.1. Introduction	120
5.2. Experimental and Characterizations	121
5.2.1. Phosphor Preparation	121
5.2.2 Characterizations	121
Part-I Luminescence studies of Ca ₃ WO ₆ :Tb ³⁺	
5.3. Results and Discussion	122
5.3.1 XRD Studies	122
5.3.2 SEM Studies	126
5.3.3 EDAX Studies	126
5.3.4 FTIR Studies	128
5.3.5 Photoluminescence Studies	129
5.3.6 Thermoluminescence Studies	133
Part-II Luminescence studies of Ca ₃ WO ₆ :Ho ³⁺	
5.4. Results and Discussion	140
5.4.1 XRD Studies	140
5.4.2 SEM Studies	143
5.4.3 EDAX Studies	143

5.4.4 FTIR Studies	145
5.4.5 Photoluminescence Studies	145
5.4.6 Thermoluminescence Studies	155
Reference	164
Chapter-6 Conclusion and Future Studies	
6.1. Conclusions	170
6.1.1 Chapter-1 Conclusion	170
6.1.2 Chapter-2 Conclusion	170
6.1.3 Chapter-3 Conclusion	170
6.1.4 Chapter-4 Conclusion	171
6.1.5 Chapter-5 Conclusion	172
6.1.5.1 Part-I Luminescence Studies of Ca ₃ WO ₆ :Tb ³⁺	172
6.1.5.2 Part-II Luminescence Studies of Ca ₃ WO ₆ :Ho ³⁺	173
6.2. Future Studies	

List of Publications

1. Introduction

During the last six decades, phosphors with excellent displays of several kinds of luminescence have been widely investigated for their practical technological applications in various fields of science and technology. Phosphors doped with different luminescent activators are widely investigated for lighting devices and displays, lasers, and medical purposes [1]. As well as the production and fabrication of white light-emitting diodes (WLEDs) have attracted huge interest worldwide because of their several advantages, including low power consumption, environmental friendliness, cost-effectiveness, and high luminescence efficiency [2]. Consequently, luminescent materials, also called phosphors, with excellent luminescence displays are the key components of commercially available WLEDs. A new generation is working on the luminescence phenomenon, primarily focusing on the luminescence efficiency [3].

Rare earth elements play a crucial role in the luminescence properties of various materials. Luminescence refers to the emission of light from a substance when it absorbs energy. Rare earths are known for their unique electronic configurations, which give rise to distinct energy levels and transitions, making them excellent candidates for luminescent applications [4,5]. The electronic configuration of rare earths provides energy levels with specific quantum numbers, which determine the wavelengths of light they can absorb and emit. The transitions between these energy levels result in luminescence. Different rare earth ions exhibit specific energy level structures, leading to a broad range of colors and emission spectra [6]. Moreover, rare earth elements are widely used in phosphors, which are materials that convert absorbed energy into visible light. Phosphors doped with rare earth ions exhibit luminescence through various mechanisms, such as fluorescence, phosphorescence, and upconversion luminescence.

In the field of luminescence investigation and its applications, many phosphors were explored for their excellent display of luminescence. In this thesis, the luminescence studies on perovskite-based luminescent phosphors and activated perovskite phosphors are discussed to functionalize them for various applications. During the initial stages of the research, a brief literature review on luminescent phosphors and rare earth-activated perovskite phosphors was carried out. As per the literature survey, several luminescent perovskites were previously reported for their diverse luminescence phenomena, such as photoluminescence, thermoluminescence, persistent luminescence, optically stimulated luminescence, up- and down-conversion luminescence, etc. This survey of literature motivates us to explore more perovskite for their practical technological applications.

2. Research methodology

After conducting an extensive review of the available literature, it becomes evident that perovskite hosts doped with rare earth ions have been the subject of numerous studies due to their remarkable luminescence properties and versatile applications in solid-state light sources, displays, temperature sensors, plasma display panels, radiation dosimetry, fluorescent lamps, optoelectronics, photonics, and more. This thesis primarily focused on the synthesis and luminescence characterization of perovskite phosphors activated by different rare earth ions. In order to fulfilment of the proposed problem, following are the steps involved and research methodology applied to accomplished the target aim.

- Synthesis of rare-earth doped perovskite phosphors using the combustion route of synthesis.
- Utilization of different characterization techniques, such as crystal structure identification using X-ray diffraction (XRD), examination of morphology using field emission scanning electron microscopy (FESEM), and functional group identification via Fourier transform infrared (FTIR) spectroscopy.
- Investigation of photoluminescence (PL) properties in several rare earth (Eu³⁺/Tb3⁺/Ho³⁺) activated perovskite phosphors.
- Study of thermoluminescence (TL) properties in rare earth doped perovskite phosphors by irradiating them with high energy and low energy ionizing radiations, and calculation of TL parameters from the TL glow curves.

3. Results and key findings

In this study, total 23 rare earth doped double perovskite-based phosphors were synthesized via the combustion route of material synthesis. This method was chosen for its simplicity, high productivity, and cost-effectiveness. In the thesis, various characterization techniques used to examine the prepared phosphors potential, including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier-transform infrared spectroscopy (FTIR), thermoluminescence (TL), and photoluminescence (PL). Moreover, the determination of expected parameter using each characterization technique was discussed in detail.

First, we prepared Sr_2YNbO_6 double perovskite by doping Eu^{3+} , and studied their luminescence properties in detail. The concentration of Eu^{3+} is taken from 1 mol% to 5 mol%. The phosphor crystallized in pure monoclinic crystal structure, that exhibited excellent PL and TL properties [7,8]. The optical properties of this phosphor were studied via the FTIR technique, wherein we found the presence of standard niobate octahedra. The results obtained

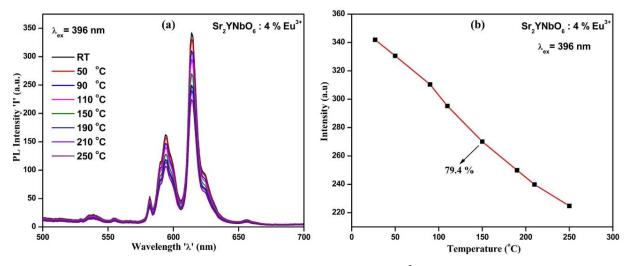


Figure 1. (a) PL emission spectra of Sr_2YNbO_6 : 4 mol% Eu³⁺ at different temperatures; (b) plot of PL intensity vs. Temperature.

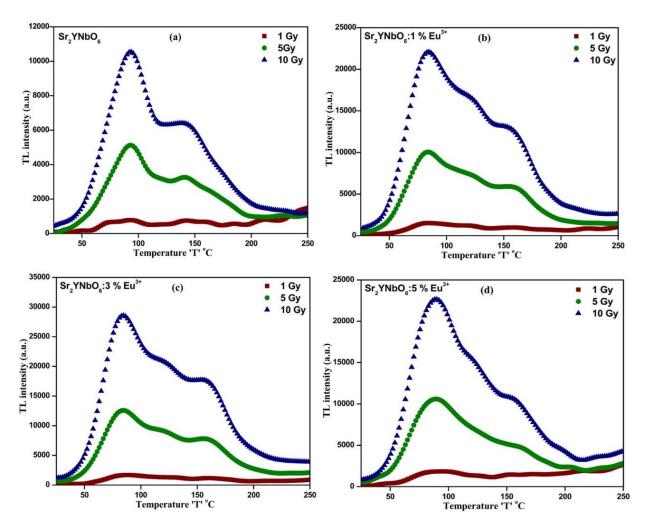


Figure 2. TL glow curves of Sr₂YNbO₆:x mol% Eu³⁺ (x=0, 1, 3, 5) phosphors at different beta doses.

from XRD and FTIR were significant and corelated. For photoluminescence studies, all samples were examined under different excitation wave length, out of which Sr₂YNbO₆: 4 mol% Eu³⁺ phosphor excited under 396 nm excitation exhibited good intense red emission, which is ascribed to standard europium emission resulting due to ${}^{5}D_{0}$ - ${}^{7}F_{2}$ transition [9,10]. Furthermore, to investigate the thermal stability of Sr₂YNbO₆: 4 mol% Eu³⁺ phosphor, the PL emission spectra were measured for wide temperature range, i.e. from room temperature to 250 °C presented in Figure 1(a). The results revealed that the thermal stability could be 79.4% at LED burning temperature (150 °C), as shown in Figure 1(b), it making this phosphor promising to be used in the WLEDs as a red component phosphor [11]. Moreover, for thermoluminescence studies all samples were irradiated using beta radiation for dose the range of 1-10 Gy, then after TL glow curves were measured from room temperature to 250 °C. The effect of dose and doping concentration on TL emission was examined as well as TL kinetic parameter was calculated. The TL glow curves of Sr₂YNbO₆:x mol% Eu³⁺ (x=0, 1, 3, 5) are shown in Figure 2. The linear response of TL intensity with increasing beta dose in the range of 1-10 Gy indicate that the phosphor may also be used in the TL dosimetry [12]. The detail study of all characterizations was presented in chapter 3 of thesis.

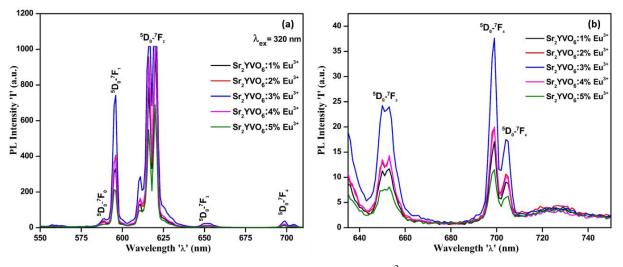
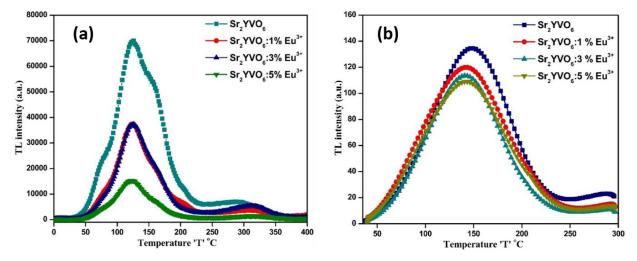



Figure 3. (a) PL emission spectra of Sr_2YVO_6 : x mol% Eu³⁺ (x =1-5) phosphors monitored with 320 nm excitation wavelength; and (b) Magnified image of PL emission spectra of Sr_2YVO_6 : x mol% Eu³⁺ phosphors within 630-750 nm.

In further experiments, we prepared a new double perovskite composition Sr_2YVO_6 doped with Eu^{3+} . The synthesis of this phosphors was accomplished through the combustion synthesis method, and structural analysis was performed using FESEM, EDAX, and FTIR spectroscopy. The Rietveld refinement of the XRD pattern of Sr_2YVO_6 phosphor suggests monoclinic crystal structure of all the Sr_2YVO_6 phosphor [13]. The PL properties were

thoroughly examined to understand the luminescent behaviour of the phosphor, wherein we found excellent PL emission of Eu^{3+} . Figure 3(a-b) depicts the PL emission spectra of Sr_2YVO_6 :x% Eu^{3+} (x=1-5) phosphor under 320 nm excitation. The red and far-red emission at 653 nm and 705 nm were observed when the 3 mol% Eu^{3+} doped phosphor excited with 320 nm excitation, which are attributed to ${}^5D_{0-}{}^7F_3$ and ${}^5D_{0-}{}^7F_4$ transitions of Eu^{3+} , respectively [14,15].

Figure 4. (a) Thermoluminescence glow curves of Sr₂YVO₆:x mol% Eu³⁺ (x=0, 1, 3, 5) phosphors after 10 Gy dose of beta irradiation; (b) TL glow curves of Sr₂YVO₆:x mol% Eu³⁺ (x=0, 1, 3, 5) phosphors under UV irradiation for 60 min.

Moreover, in TL experiments, the phosphor Sr_2YVO_6 doped with Eu^{3+} underwent irradiation using two different ionizing radiations, namely beta and UV rays, with varying radiation doses. Figure 4 (a) and (b) depicts the TL glow curves of Sr_2YVO_6 :x% Eu^{3+} phosphors under fixed dose of beta and UV rays, respectively. Interestingly, the undoped phosphor under study exhibited highest TL glow under both the irradiation rays. The linear dose response towards beta rays and UV rays indicate that the phosphor may useful for the dosimetry purpose towards beta rays and UV rays [16-17]. The detail study of all characterizations was presented in chapter 4 of thesis.

Our further study aimed the perovskite exploration for the luminescence characterization. Kept this in mind, we selected a tungstate perovskite Ca₃WO₆ for luminescence study, which is doped with Tb³⁺ and Ho³⁺. The Ca₃WO₆:Tb³⁺ (Tb³⁺=0.5-2.5 mol%) and Ca₃WO₆:Ho³⁺ (Ho³⁺=1-5 mol%) phosphors were prepared via the combustion route of synthesis. A study on XRD technique of all the tungstate phosphors considered for luminescence study indicated the pure monoclinic crystalline structure with a P 21/c symmetry [18-19]. A study on FTIR spectroscopy of undoped, Tb³⁺ doped and Ho³⁺ doped phosphors

suggest the presence of standard tungstate bonding [20,21]. Both the phosphor series exhibited very good green spectral emission with notable intensity.

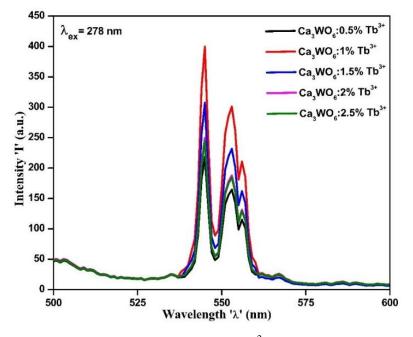
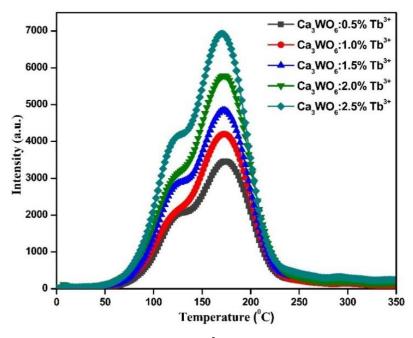



Figure 5. PL emission spectra of Ca₃WO₆: x% Tb³⁺ (x=0.5, 1, 1.5, 2, 2.5) phosphors.

Figure 6. TL glow curves of $Ca_3WO_6:x\%$ Tb³⁺ (x=0.5-2.5) phosphors after 50 Gy dose of beta irradiation.

When $Ca_3WO_6:Tb^{3+}$ phosphor excited with 278 nm, it shows green emission at 545 nm, which is standard terbium emission occurs from ${}^5D_4-{}^7F_5$ transition, shown in Figure 5 [22,23]. When the phosphor is doped with 1 mol% of Tb^{3+} , it exhibited highest PL intensity. Later, for higher doping concentration of Tb^{3+} , the PL intensity found quenched. Moreover, a high

intense TL is observed from Ca₃WO₆:Tb³⁺ phosphors after beta irradiation, shown in Figure 6. After 50 Gy dose of beta irradiation, the Ca₃WO₆:x% Tb³⁺ (x=0.5-2.5) phosphors exhibited most intense TL glow maximum at 170 °C with a small hump on the lower temperature side. The excellent linear dose response with increasing beta dose, and less TL fading making Ca₃WO₆:2.5%Tb³⁺ phosphor promising candidate to be used in TL dosimetry [24,25].

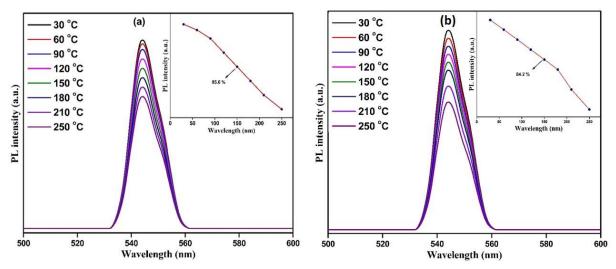


Figure 7. (a) Temperature dependent PL of Ca_3WO_6 :1 mol% Ho³⁺ phosphor monitored with 454 nm; (b) Temperature dependent PL of Ca_3WO_6 :1 mol% Ho³⁺ phosphor monitored with 362 nm.

In the case of $Ca_3WO_6:Ho^{3+}$ phosphor series, we found admirable PL display with notable emission intensity. When the $Ca_3WO_6:Ho^{3+}$ phosphor is excited at 362 nm, and 454 nm, it exhibited standard holmium emission, which is resulted due to ${}^5F_{4}-{}^5I_8$ transition of Ho^{3+} [26,27]. The thermal stability of the phosphor $Ca_3WO_6:Ho^{3+}$ phosphor was checked by taking the PL emission at various temperatures, starting from RT to 300 °C. Figure 7 (a) and (b) shows the temperature dependent PL emission spectra of $Ca_3WO_6:1\%Ho^{3+}$ phosphor under 454 nm and 362 nm excitations. The phosphor under study shows very high thermally stable PL emission at 150 °C (LED burning temperature) with PL intensity of 85.6% when excited at 454 nm, and 84.2% when excited at 362 nm, when compared to intensity observed at RT. The excellent thermal stability of $Ca_3WO_6:Ho^{3+}$ phosphor making it very promising for its applications in UV and blue excited LEDs [28]. The detail study of all characterizations was presented in chapter 5 of thesis.

4. Conclusion and future study

Herein, several rare earths (Eu^{3+} , Tb^{3+} and Ho^{3+}) activated double perovskite phosphors were synthesized via the combustion synthesis and studied for their luminescence characterizations. As a result, we found multi-purpose materials for their applications in the field of lighting devices and radiation detection. First, we have prepared the Sr_2YNbO_6 double perovskite doped with various concentrations of Eu^{3+} . Wherein, we have found highly thermally stable materials with the thermal stability of the order of ~79.4%. Moreover, the TL investigation is also found interesting and shows linear dose response to beta rays within the dose range of 1-10 Gy. The overall results obtained from the Sr_2YNbO_6 phosphor under study provide enough evidence that the phosphor can be used as a red component phosphor in the WLEDs. Later, by replacing the Nb⁵⁺ site with V⁵⁺ in the Sr_2YNbO_6 double perovskite, we have prepared new double perovskite Sr_2YVO_6 by doping Eu^{3+} . As a result, we found deep red PL emission in addition to the orange-red PL emission. Moreover, these phosphors also exhibited excellent TL response after beta irradiation. The excellent linear TL dose response was observed towards high-energy beta rays. The excellent PL display at 278 and 320 nm with very high color purity shows the potential application of the phosphor under study in the display devices. Moreover, from the observed linear dose-response, it also may be useful in the TL dosimetry.

In the next experiment, we have taken a tungstate based double perovskite Ca₃WO₆ and doped with various concentrations of Tb^{3+} and Ho^{3+} . When the Ca₃WO₆: Tb^{3+} phosphor under study was excited at 278 nm, it exhibited excellent green emission at 545, 553, and 567 nm, with the highest intensity at 545 nm (${}^{5}D_{4}$ - ${}^{7}F_{5}$ transition of Tb³⁺). The highest PL intensity was observed from the phosphor containing 1 mol% of Tb³⁺, however, further increment in doping level leads to intensity quenching, for which multipolar interaction is the responsible phenomenon. Additionally, after beta irradiation, all the Tb³⁺ doped Ca₃WO₆ phosphors exhibited excellent TL response. The excellent linear dose-response and the very low fading of the order of ~12% indicate that the Ca₃WO₆:2.5 mol% Tb³⁺ phosphor can be a good candidate to be used in TL dosimeters. Moreover, the bright green emission under 278 nm excitation reviled potential application of the phosphor in the display materials. In the second tungstatebased phosphor series doped with Ho^{3+} , we have found highly intense single-peak wavelength green emission under UV (362 nm) and blue (454 nm) excitations. A study on temperature dependent PL shows highly thermally stable material, which has ability to emit bright green emission even after reaching LED burning temperature. In addition, all the Ho³⁺ doped tungstate phosphors displayed good TL response after beta irradiation. Wherein, the effect of Ho³⁺ concentration and different doses of beta radiation were studied and discussed. Among all studied samples, Ca₃WO₆:2% Ho³⁺ was found more promising for TL characteristics. An exceptional linear dose-response was observed from the phosphor within the dose range of 10-50 Gy. Besides, the effect of heating rate on the TL glow curve was studied, which indicates

negligible thermal quenching from the phosphor under study. Finally, the linear dose response and lower thermal quenching features make phosphor a good candidate to be used for dosimetry applications. The exceptionally high thermal stability at 362 and 454 nm excitation, makes phosphor promising to be used in UV- and blue-excited LEDs.

In this thesis, we reported the rare-earth activated double perovskites, which are prepared via the combustion route of synthesis. In future, we would like to explore the rare-earth free perovskites as well as rare-earth doped perovskites for their PL and TL characterization. Also, we want to explore the perovskite nanoparticles, that can be prepared by using the hydrothermal method of material synthesis.

Bibliography

- 1. C.C. Lin, W.T Chen, and R.S. Liu, Phosphors for White LEDs, *Handbook of Advanced Lighting Technology* (2017) 181-222.
- Z. W. Zhang, L. Liu, S.T. Song, J.P. Zhang, and D.J. Wang, A novel red-emitting phosphor Ca₉Bi(PO₄)₇:Eu³⁺ for near ultraviolet white light-emitting diodes, *Curr. Appl. Phys.* 15 (2015) 248-252.
- M. Shang, C. Li, J. Lin, How to produce white light in a single-phase host?, *Chem. Soc. Rev.* 43 (2014) 1372-1386.
- Zhang and H. Zhang, Special Issue: Rare earth luminescent materials, *Light Sci. Appl.* 11 (2022) 260.
- 5. V. Balaram, Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact, *Geoscience Frontiers* **10** (2019) 1285-1303.
- 6. I. Gupta, S. Singh, S. Bhagwan, and D. Singh, Rare earth (RE) doped phosphors and their emerging applications: A review, *Cera. Inter.* **47** (2021) 19282.
- J. Chen, S. Zhao, Z. Zhao et al., The structure and luminescence properties of blue-greenemitting Sr₂YNbO₆: Bi³⁺ phosphors, *J. Lumin.* 239 (2021) 118336.
- L. Shi, Y. Han, Z. Ji et al., Effects of Al³⁺-substitution on photoluminescence properties of Sr₂YNbO₆:Mn⁴⁺ far-red phosphor for plant cultivation, *J. Lumin.* 218 (2020) 116828.
- I. Nikiforov, D. Deyneko, D. Spassky et al., Tunable luminescence and energy transfer in Eu³⁺ doped Ca₈MTb(PO₄)₇ (M = Mg, Zn, Ca) phosphors, *Mater. Res. Bull.* 130 (2020) 110925.
- R. Liu, Y. Zhan, L. Liu et al., Morphology analysis and luminescence properties of YVO₄:Sm³⁺,Eu³⁺ prepared by molten salt synthesis, *Opt. Mater.* **100** (2020) 109633.

- 11. G. Rajkumar, V. Ponnusamy, G. Kanmani et al., A new perovskite type Ba₂YZrO₆: Eu³⁺ red phosphor with cubical morphology for WLEDs applications, *J. Lumin.* **227** (2020) 117561.
- S. Kaur, A. Rao, M. Jayasimhadri et al., Synthesis optimization, photoluminescence and thermoluminescence studies of Eu³⁺ doped calcium aluminozincate phosphor, *J. Alloy. Comp.* 802 (2019) 129-138.
- 13. Y. Alsabah, A. Elden, M. Alsalhi et al., Structural and optical properties of A_2YVO_6 (A = Mg, Sr) double perovskite oxides, *Results Phys.* **15** (2019) 102589.
- 14. S. Wang, M. Chen, S. Lan et al., Finding a novel $Ca_2M_3(SiO_4)_2(PO_4)O$ (M = La, Y):Eu³⁺ red-emitting phosphor with positive responsiveness to phytochrome: Application in plant cultivation, *J. Lumin.* **237** (2021) 118151.
- T. Wang, X. Xu, D. Zhou et al., Red phosphor Ca₂Ge₇O₁₆:Eu³⁺ for potential application in field emission displays and white light-emitting diodes, *Mater. Res. Bull.* 60 (2014) 876-881.
- S. Jakathamani, O. Annalakshmi, M. Jose et al., Thermoluminescence dosimetric characteristics of terbium doped barium metaborate phosphors, *Radia. Phys. Chem.* 187 (2021) 109544.
- 17. J. Benavente, J. Gomez-Ros and V. Correcher, A kinetic model for the thermoluminescent high dose response of LiF:Mg, Cu,P (MCP-N), *Appl. Radia. Isotop.* **170** (2021) 109634.
- X. Zhao, J. Wang, L. Fan et al., Efficient red phosphor double-perovskite Ca₃WO₆ with A-site substitution of Eu³⁺, *Dalton Trans.* 42 (2013) 13502-13508.
- S. Zhang, Y. Hu, L. Chen et al., Photoluminescence properties and energy transfer of Ca3WO6:Sm³⁺ co-doped Eu³⁺, *Appl. Phys. A* 115 (2014) 1073-1080.
- H. Najafi-Ashtiani, A. Bahari, S. Gholipour et al., Structural, optical and electrical properties of WO₃-Ag nanocomposites for the electro-optical devices, *Appl. Phys. A* 124 (2018) 24.
- H. Pang, X. Xiang, Z. Li et al., Hydrothermal synthesis and optical properties of hexagonal tungsten oxide nanocrystals assisted by ammonium tartrate, *Phys. Status Solidi A* 209 (2012) 537-544.
- 22. V. Singh, S. Watanabe, T. Rao et al., Luminescence and defect centres in Tb³⁺ doped LaMgAl₁₁O₁₉ phosphors, *Solid State Sci.* **12** (2012) 1981-1987.
- 23. V. Dubey, R. Tamarkar, R. Chanrakar et al., Effect of Tb^{3+} ion concentration on photoluminescence and thermoluminescence studies of Y₄Al₂O₉ phosphor, *Optik* **226** (2021) 165926.

- 24. K. Gavhane, M. Bhandane, A. Bhoir et al., T_m-T_{stop} analysis and dosimetric properties of Ce doped BaB₄O₇ phosphor, *J. Alloy. Comp.* **817** 152805.
- 25. M. Gowri, G. Darshan, Y. Naik et al., Phase dependent photoluminescence and thermoluminescence properties of Y₂SiO₅:Sm³⁺ nanophosphors and its advanced forensic applications, *J. Alloy. Comp.* **96** (2019) 109282.
- 26. V. Singh, C. Annapurna Devi, S. Kaur et al., Optical properties of Sr₂La₈(SiO₄)₆O₂ doped with Ho³⁺ phosphor, *Optik* **242** (2021) 167268.
- 27. H. Premkumar, B. Ravikumar, D. Sunitha et al., Investigation of structural and luminescence properties of Ho³⁺ doped YAlO₃ nanophosphors synthesized through solution combustion route, *Spectrochemi. Acta A: Mol. Biomole. Spectro.* **115** (2013) 234-243.
- H. Guo, B. Devakumar, R. Vijayakumar et al., A novel Sm³⁺ singly doped LiCa₃ZnV₃O₁₂ phosphor: a potential luminescent material for multifunctional applications, *RSC Adv.* 8 (2018) 33403-33413.