BROMINATION OF ACETOACETANILIDE: A REVISION OF STRUCTURE

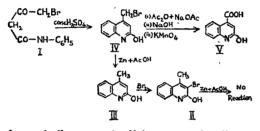
· •

J

ι.

.

BY


R. J. CHUDGAR AND K. N. TRIVEDI

.

Reprinted from "Curr. Sci,", October 5, 1965, 34, No. 19,560

BROMINATION OF ACETOACETANILIDE : A REVISION OF STRUCTURE

KNORR¹ brominated acetoacetanilide in chloroform solution and claimed to have obtained a-bromoacetoacetanilide. Hasegawa² and Cook et al.3 repeated the above experiment in chloroform and gave ω -bromoacetoacetanilide (I) structure to this product. Mehta and coworkers^{4,5} brominated acetoacetanilide in acetic acid solution and claimed to have obtained a-bromoacetoacetanilide. They further reported that this product on cyclisation gave 3-bromo-4-methyl-2-hydroxyquinoline (II) which was identical with the product obtained on bromination of 4-methyl-2-hydroxyquinoline (III). In

view of these contradictory reports, it was thought of interest to repeat the work by both the procedures. In both the cases, the same product (Found: N = 5.84%, Br = 31.69%; $C_{10}H_{10}O_{2}BrN$ requires: N = 5.46%, Br = 31.25%) with m.p. and mixed m.p. 135-36° was obtained. The product is assigned w-bromoacetoacetanilide structure on the basis of the following series of reactions. It gave on cyclisation with concentrated sulphuric acid 4-bromomethyl-2-hydroxyquinoline (IV), m.p. 254-56° which is different from the 3-bromo-4-methyl-2-hydroxyquinoline (II) (Found : N = 5.84%, Br = 33.97%; $C_{10}H_8ONBr$ requires: N = 5.88%, Br = 33.61%), m.p. 274° obtained by the bromination of 4methyl-2-hydroxyquinoline. 4-Bromomethyl-2hydroxyquinoline (IV) is converted to known 2-hydroxy cinchoninic acid⁶ (V) (Found: $N=7\cdot14\%$; $C_{10}H_7O_3N$ requires : $N=7\cdot4\%)$ by treatment with acetic anhydride and fused sodium acetate followed by hydrolysis and oxidation with KMnO4. 4-Bromomethyl-2hydroxyquinoline (IV) on reduction with zinc and acetic acid gave 4-methyl-2-hydroxyquinoline (III) while 3-bromo-4-methyl-2-hydroxyquinoline (II) remained unaffected under similar conditions.

The authors record their thanks to Dr. S. S. Lele for carrying out the microanalysis.

Chemistry Department, Faculty of Science, M.S. University of Baroda. Baroda-2, March 8, 1965.

R. J. CHUDGAR. K. N. TRIVEDI.

1.

- 3.
- Knorr, Ann., 1886. 236, 79. Hesagawa, Pharm. bull., 1953, 1, 50. Cook et al., J. Org. Chem. 1961, 26, 4949. Mehta, Trivedi and Patel, J. Sci. and Ind. Res., 1961, 20 B, 460. and Patel, Curr. Sci., 1961, 30, 15 Jacobs et al., Org. Synthesis, 1948, 28, 70. 4. 5.

Reprinted from "Curr. Sci.", January 20, 1967, 36, No. 2, 44-45

SYNTHESIS OF 4-AMINOMETHYL CARBOSTYRIL DERIVATIVES

CHUDGAR AND TRIVEDI¹ conclusively proved that bromination of acetoacetanilide gave w-bromo acetoacetanilide which on cyclisation gave 4-bromomethyl carbostyril. These 4-bromomethyl carbostyril derivatives are now used as intermediates for the synthesis of 4-aminomethyl carbostyril derivatives.

4-Aminomethyl carbostyrils are prepared by refluxing equimolecular quantities of dimethylamine, piperidine and morpholine respectively with 4-bromomethyl carbostyrils, dissolved in alcohol, for 2 to 3 hrs. The separated 4-aminomethyl carbostyril derivatives (Table I) are filtered, dried and recrystallised from alcohol or benzene.

The authors record their thanks to Dr. Lele for microanalysis. One of us (R. J. C.) thanks the U.G.C. for the award of a research scholarship.

Chemistry Department, Faculty of Science, M.S. University of Baroda, Baroda-2, August 11, 1960.

 Chudgar, R. J. and Trivedi, K. N., Curr. Sci., 1965, 34, 560.

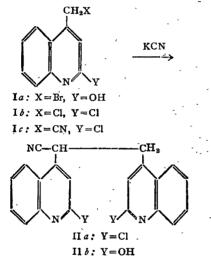

SI.	Substituents	m.p.	Molecular	Found	Required
No.	in carbostyril		formula	% N	% N
1	None	197	C12H14N2O	14:40	13-88
2	8-Methyl	199	C13H16N2O	12.63	12.98
3	6-Methoxy	183	C13H15N2O2	12.33	12.07
4		230- 32	C12H18N2CIO	11.89	11-85
5	6-Bromo	230	C12H13N2BrO	10.22	9.96
8	7-Chloro	183	C12H11N2C10	11.73	11.85
-	4-Pi	perid	inomethyl'Carbos	tvril	
1	None	209	C15H18N2O	11.99	11.57
2	8-Methyl		C16H40N2O	11.05	
-		33		•	
3	6-Methoxy		C16H20N2O2	10.17	10-30
	, .	23		-	
4	6 Chloro	245	C15H17N2ClO	10.23	10-13
5	6-Bromo	242	C15H17N2BrO	8.41	8-61(
6	7-Chloro	239	C15H17N2CIO	10.33	10-13
-	4-Mc	rphol	inona thyl Carbos	tvril	
1	None	235	C14H16N2O2	11.43	11.48
2	8 Methyl -	240-	C15H18N2O2	11.13	10-85
-	•	41			· .
3	6-Methoxy	208	C15H18N2O3	10.21	10.22
à.	6-Chloro	240-	C14H15N2CIO2	9.96	10.06
-		42	•д		
5	6 Bromo	230	C14H15N2BrO2	8.382	8 - 87
ě.	7 Chloro	234	C14H N2CIO2	10.48	1.08

TABLE I

Reprinted from "Curr. Sci.", June 20, 1968, 37, No. 12, 344

SYNTHESIS OF 4, 4'-CYANOETHYLENE BIS-(2, 2'-DICHLORO QUINOLINE) AND 4, 4'-CYANOETHYLENE BIS-(2, 2'-DIHYDROXY QUINOLINE) DERIVATIVES

CHUDGAR and Trivedi¹ conclusively proved that bromination of aceto-acetanilide gave ω -bromoacetoacetanilide which on cyclisation gave 4-bromomethyl carbostyril (I a). This on treatment with phosphorus oxychloride, gave 2-chloro-4-chloromethyl quinoline (I b), m.p. 97°. (I b) when refluxed with alcoholic potassium cyanide solution gave 4, 4'-cyanoethylene bis-(2, 2'-dichloro quinoline) (II a), m.p. 211°, and not 2-chloro-4-cyanomethyl quinoline (I c).

4-Bromomethyl-2-hydroxyquinoline (Ia), on a similar condensation with potassium cyanide, gave 4, 4'-cyanoethylene bis-(2, 2'-dihydroxy) quinoline), m.p. $> 300^{\circ}$ (II b). This when refluxed with phosphorus oxychloride gave (II a). M.p. and mixed m.p. was 211°. All compounds described above gave satisfactory analytical results.

The structure of 4, 4'-cyanoethylene bis-(2, 2'-dichloro quinoline) is confirmed by NMR spectra shown in Table I.

TABLE I

NMR spectra of (IIa). (60 MC. CDCl₃)

Shift (δ)	Coupling constant J (c/sec.)	Signals	Assignment		
7.5 to 8.5	**	Multiplet	10 H (aromatic)		
5.1	8	Triplet	1 H		
4.2	8	Doublet	2 H		

Synthesis of 4, 4'-cyanoethylene bis-(2, 2'dichloro quinoline) derivatives having different groups is in progress and will be published elsewhere.

Thanks are due to Professor S. Sethna for his keen interest in the work and to Dr. Lele for microanalysis.

Chemistry Dept.,	R.	J.	CHUDGAR.					
Faculty of Science,	ĸ.	N.	TRIVEDI.*					
M.S. University of Baroda,								
Baroda-2, March 19, 1968.	•							

*Present address : Chemistry Department, Wollongong University College, Wollongong, N.S.W., 2500, Australia

1. Chudgar and Trivedi, Curr. Sci., 1965, 34, 560.