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4.1 Preview
The behaviour of surfactants and polymers in aqueous solutions has been well
understood®. Both polymers and surfactants can form a range of solutions including

liquid crystalline phases and exhibit unique properties®**

. However, the properties of
polymer amphiphile mixtures are quite complex and the study of their key features

have gained importance only during the recent past.

The interest in polymer-surfactant interactions is mainly due to new and specific
technological applications. In this aépect the physical properties of the polymer play a
relevant role in determining the industrial products because they determine the degree

~of fluidity, the level of foaming®, the adsorption on solid surfaces™, etc. In

continuation to the interest in this laboratory on the properties of polymers>**** and
surfactan.tsss’m3'214’3 37338 it was decided to study their properties in presence of each

other®™,

. The physicochemical characterization involves determination of critical aggregation
' concenfration (cac) and polymer saturation point (psp) by the surface tension and
conductance measurements. The surface tension meihod affords a simple and
Mo@ative method for studying mixtures of two components, one of which is highly
éurfacé active and the other relatively inactive at the air / water interface. Using
| conductance data, the degree of ionization ‘e’ and the thermodynamic parameters
* associated with psp at different temperatures were calculated. The surface tension
' data was used to evaluate surface parameters like maximum surface excess [max and
' minimum afea per molecule Api, and the thermodynamic parameters of adsorption.

Viscosity measurements of polymers were carried out at various surfactant
concentrations. The intrinsic viscosity [1}], shape factor, activation energy parameters

at infinite dilution and the expansion factor ratios in presence of different surfactant

concentrations were computed.
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Cloud point determinations of nonionic surfactant Triton X100 in presence of

different concentrations of polymer were done. Aggregation number (Ngg)
determination for TX100 in presence of these polymers were carried out. Small angle

‘neutron scattering (SANS) studies for PAA-SDS and PAA-CTAB systems were done.

4.2  Results and Discussion

(i) Critical aggregation concentration (cac) and polymer saturation point (psp) =

The natural starting point of discussion of polymer-surfactant interactions appears to
consider the effect of polymer molecules on surfactant self assembly, particularly
micelle formation. The onset of aggregatioﬁ of surfactant in the presence of polymer
can be characterized by the critical aggregation concentration. This concept was

develdped by Chu and Thomas**’

. This notion indicates that the surfactant molecules
form aggregates upon interaction with the Vsurfactants. The surface tension - log
concentration (log C) plots show two breakpoints (Fig. 37). As mentioned earlier, the
first break is termed as cac or T; and on increasing the surfactant concentration a
second break point is observed. This is termed as polymer saturation point (psp) or Ta.
~ Above this concentration regular micelles are in dynamic equilibrium with polymer-

39 The existence of two critical concentrations in case of -

surfactant aggregates
polymer-surfactant systems was first reported by Jones'*, for the SDS/PEO system.
The values of cac and psp are generally located below and above the corresponding
cmc of the surfactant respectively. The micelles formed at cac have smaller
aggregation number, and a higher degree of charge delocalization than those of

regular micelles®*!

. The polymer chains are believed to envelope the micelles with the
hydrophilic regions of the chain associated with the ionic head groups and the
hydrophobic regions protecting the exposed hydrophobic areas of the xhicelle. Such a
formation which limits the exposure of hydrophobic areas of the micelles with water
is obviously energetically favourable and therefore the micelles form at a lower
surfactant concentration i.e. T;. In other words, the stabilization of the interface -
between the hydrophobic core of the micelles and water is considered as a major

' driving force for polymer - micelle interactions. This lead to the development of the
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‘necklace model” by Shirahama®*? in which the beads are the SDS clusters and string

is the polymer chain.

The homopolymers PAA, PAAc and their copolymers P(AA-AAc) in different
monomer feed ratios were studied with nonionic surfactant TX100 and cationic Cetyf
trimethyl ammonium bromide. In the polymers - TX100 systems the surface tension -
log C profile showed two break points. But, in case of PAA - TX100 (Fig. 37) both
cac and psp values are lower than the cmc of pure TX100. As the acrylic acid moiety
increases in the polymers, the psp values also increase (Fig. 38,39). Table 9-13 give
the cac and psp values for.these polymers with TX100 from surface tension,
measurements. Five different polymer concentrations at four different temperatures
have been studied. In case of PAA- TX100 systems, for all the concentrations studied,
the psp values decrease with increase in température. This is probably due to the fact
that PAA TX100 both being nonionic is behaving akin to a nonionic surfactant
complex. Generallly in case of a nonionic surfactant, cmc decreases with increasing
temperature®’. This lowering of cmc due to increasing temperature may be attributed
to various factors like changes in the water structure, as well as the water-surfactant
interaction, dehydration of the oxyethylene nﬁ.oiety of the surfactant molecule. PAA
being neutral, this complex.showsz similar characteristics as ﬁonionic surfactant. For
PAA-TX100 systems, with increase in PAA concentrations, there is a decrease in psp
~ values. Increase in temperatu‘ré decreases the aggregation number of TX100 on the
polynier and hence psp decreases. Lower psp values than cmc indicate the micelle
formation even before it gets saturated. Hence, the overall variation of psp with
température may be determined by the structure of PAA-water matrix, TX100-PAA
interaétion, TX100-water and TX100-PAA-water interaction®”’.

However, in case of the copolymers and PAAc with TX100 this was not the case. At
very low copolymers P(AA-AAc) concentrations, the cac and psp are lower than the
cme off TX100, but as acrylic acid moiety and polymer concentration were increased

the psp values increase. Generally, in case of ionic surfactant systems the cmc
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increases with increase in temperaturez“. Similarly, ionic repulsions due to their
polyelectrolyte like nature play an important role in variation of psp in these syétems.
The cac values are found around a particular concentration range for a poI*ner
system’'. The values of cac are weakly dependent on the amount of pOlym;r in
solution'®, while the psp varies linearly with it. The increase in psp values with
increase in polymer concentration suggests the availability of more binding sites for
the surfactant to interact resulting in higher psp values®. In the PAAc-TX100 systems
the psp values are comparatively higher than the cmc of TX100.Similar results were
observed for PAAc and nonionic surfactants of the CiE; type by Saito etal.'®® These
- results indicate structural differences between PAA and the other polymers containing

the acrylic acid moiety.

In all these polymer-TX100 systems, the surface tension Y values at psp are not same

for pure TX100. Goddard®® suggests that when the surfactant is present in excess and
the cox)cehtration of micelles are relatively high, the micelle / water and the air / water
interface compete progressively for the polymer i.e. the interface is free of polymer at
 this point. Thus, surface tension values are somewhat different from pure surfactant
solutions at psp and are at higher concentrations, hence we suggest that the complete
transfer of polymer does not oceur from air-wéter interface and the air-water interface
is saturated with polymer-surfactant complex and not only with polymer or surfactant.
Even the interfacial tension values between cyclohexane / aquo TX100 suggest that in

presence of polymer (PAA) the values are higher than at its absence (Fig. 40).

The same polymers were studied with CTAB to study the changes of cac and pép,
- both by surface tension (Fig. 41) and conductance measurements (Fig. 42). However,
we were unable to carry out surface tension or conductance measurements \for PAAc-
. CTAB systems in this required. concentration range, In polyelectrolyte - oppositely
charged surfactant systems (i.e. PAAc-CTAB), the interactions clearly results from

343

strong coulombic forces™ . In contrast to nonionic polymers, the interaction leads to

phase separation. This fact limits the studies to surfactant concentrations close to the
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21, However, for the copolymers,

critical micelle concentration (cmc) of the surfactant
~ which has large number of acrylamide moiety, the surface tension and conductance
measurements were possible. Tables 14-17 give cac and psp values for PAA,
copolymers-CTAB systems from the conductance measurements whereas values from
surface tension data are. givén in Tables 18-21. The cac values obtained from surface
tension ' measurements are comparatively lower than conductance data. Repeated
experiments gave similar fesults. The reason for this discrepancy is not understood.
However, the psp values obtained by both the methods are in agreement. Again, the
cac values obtained by each of the methods remain over a certain concentration range
independent of temperature and polymer co_ncentrationg'. The values of psp obtained
in case of PAA-CTAB decrease with increasing temperature. The psp values reach
faster with increasing temperature indicate saturation of polymer at lower
temperature. As mentioned earlier, presence of micelles like beads around the
polymer chains form necklace'”® like structure and the neutral molecule decreases the
ion-ion repulsions. Increase in temperature does not have much effect on this necklace
but the aggregation member of the surfactant decreases and hence the psp decreases.
The psp values increase with polymer concentration suggest more binding sites are

* available for binding, hence more surfactant is needed®®'"®,

In case of the copolymer-CTAB systems, the psp values increase with increasing
temperature and polymer concentration. Interaction with the surfactant begins at
surfactant concentrations much below the cmc of the surfactant. Similar to the surface
tension - log C plots which give two break points, the specific conductance
concentration plots exhibit three linear régioné§ below the cac, between the cac and
psp where micelle like aggregates begin to develop and above the psp where co-
;axistgnce of dynamic equilibrium of a surfactant saturated polymer and regular

1% (Fig. 42). The binding studies of oppositely charged-surfactant

micelles occur
systems have been done earlier also. The binding of a polyelectrolyte and oppositely
charged-surfactant results in synergistic lowering of surface tension at very low

surfactant concentration, implying formation of a very surface active species'’. A
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direct consequence of increased surface activity of the polycation as it binds to
surfactant is its increased foaming property'™. The earliest work on the interaction of
surfactants and serum albumin with opposite charges were carried out by Putnam and
Neurath®*, that lead to the precipitation on the acid side of its isoelectric point and
soluble complex formation on the basic side. The combined system of
polyelectrolytes and oppositely charged surfactant passes through various regions of
clear, turbid, precipitate, slightly precipitate and clear again'*2. This was observed for
the copolymers with CTAB and at the point it clears, the psp occured. Thus,
eventually the surface tension curve coincides with the polymer free surfactant system
in the micellar region. For these systems the psp values increase with increasing
temperature. This is quite common in ionic surfactant systems, as micellization is due
to hydrophobic interaction®''. Increase in temperature results in ionic repulsions or
increase in mobility of ions, and hence higher concentration is required for micelle
formation. The psp values increase with temperature and increasing polymer

concentration.

(if) Thermodynamic parameters :

The knowledge of the energetics of the process serve as a measure of the nature of
interaction. In case of surfactant systems, the thermodynamic parameters associated
with micellization are evaluated, similarly for polymer-surfactant systems the
thermodynamic parameters can be evaluated at cac as well as at psp. The free energy
of micellization at psp, AG®psp, for a nonionic system is given by*%
AG°,p=RT In Cy,

The free energy of micellization at psp is directly proportional to psp (taken in the
mole fraction scale). Even in the case of copolymers and PAAc ie. the
polyelectrolytes TX100 systems, the free energy of micellization was evaluated by the
above equation because the specific conductance - TX100 concentration plots in these
systems do not show any change in conductance values with changing TX100

concentration.
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Tables 22-26 give the free energy, enthalpy and entropy values for the TX100
polymer systems. In case of pure TX100, the free energy values become more
negative with increase in temperature, indicating spontaneous micelle formation.
_Even in the presence of polymers the AG®, values become more negative with
increase in temperature. This is because the change in the magnitude of the logarithm
of cmc is more than compensated by the change in RT values™™. The AG®y, are
always 'foundA to be much more negative compared to AG®,, values indicating micelle
- formation in presence of the polymers is more favourable compared to normal

micelle.

The enthalpy and entropy of micelle formation in presence of polymers are given by
the well known relation
AG®psp = AHCpep - TAS®psp

From tables 22-26, it can be noted that micellization of TX100 in presence of PAA is
endothermic whereas in presence of PAAc and the copolymers it is exothermic. The
exothcrmicity and endothermicity of micellization are specéﬁc to the surfactant, the
nature of the added (‘:ompbundn""m'm, in this case a polymer and temperature of
micellization. The presence of the polymer effects the endothermic or exothermic

nature of the compound.

Similarly, the entropy changes correspond with changés in the polymer from PAA to
the copolymers to PAAc. As the systems become more polyelectrolytic due to the
presence of charges in the system, the randomness decreases and the magnitude of
entropy AS°sp is reduced. Changes in entropy of any system can be explained by
various schools of thought. In case of nonionic surfactant, the entropy gained by the
destruction of the structured water shell is commonly credited as providing the
driving force for the process. Moreover, with temperature increase, the entropic gain
is greater than the enthalpic gain hence free energy becomes more negative®*. As
temperature increase leads to dehydration of the oxyethylene groups, there are more

number of nonpolar conformations available which thus provide an entropic driving
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347 However, it is expected that high entropy

force for the conformational éhanges
changes are generally associated with phase changes. Shaw'” has suggested that the
high entropy change may be due to the freedom of movement of the hydrocarbon
chain in the core of the micelle. However, we are not -very clear how this movement
of hydrocarbon chains in the core of the micellar aggregates can have a dominating
effect on entropy values, which is a macroscopic property. According to Rosen®” the
presence of hydrated oxye‘thidene groups of the surfactant in the solution introduces
structure in the liquid water phase and the decrease in the surfactant-water contact
because of micellization results in ‘an increase in the overall randomness and hence
increase in entropy. In the case of PAA-TX100 system, both being nonionic, their
complex formed shows similar tendencies. However, the copolymers and PAAc due
to the presence of charges, hinders the freedom of movement thereby lowering the
entropy values. The large positive TAS®,, dominate over small .AH°psp values

indicating that the micellization process is entropy driven.

For ionic surfactant systems, the free energy of micellization is given by
AG®pp = (2-0) RT In Cpp

‘where Cpgp is taken in the mole ﬁaétion scale. a is the degree of ionization of the
micelle and is usually obtained from the slopes of the conductivity - concentration
plots above and below the cmc. Several techniques have been used to determine the o
values for ionic micelies, but the value depends on the method™. Conductometric
determination of ‘o’ is based on the ‘method of slopes’>*®. The value of « calculated
by this method are higher because the micellar contributioﬁ to the conductance is
assumed to be the same as that of an equivalent number of monomeric ions, the sum
of whose charges is equal to the micellar charge. Several workers have found ‘o’

1. found o values of

values of polymer-surfactant systems in this manner. Zana et a
- 0.85 and 0.65 for PVP-SDS complex and PEO-SDS complex respectively. Witte and
Engberts'*® estimated a-values of 0.58 for PEO-SDS complex. In case of CTAB-

polymers systems, we got values around 0.5-0.75.
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In these systems the AG®,, values are found to become more negative with increase
in temperature indicating spontaneous micelle formation (Tables 27-30). A linear
AG®,5-T plot (r = 0.989-0.999) was used to compute AH®ps, and AS°, values. The
enthalpy values for ionic surfactant systems are negative. In PAA-CTAB systems, low
negative values are found but at higher PAA concentrations the values become
positive. The nonionic nature of the polymer, probably may be a reason for the
positive enthalpy values at. high PAA concentrations. However, in case of the
copolymers and CTAB, negative values of enthalpy indicate the process to be highly

exothermic.

The AS®p, values for a ionic surfactant system are much lower compared to that of
nonionic surfactant system. The presence of charges results in lowered degree of
randomness. For the ionic surfactant CTAB-copolymer system the magnitude in
AS°p values are much lower compared to TX100-copolymer systems. Again the
presence of charges of polymer and ionic surfactants results in low AS°,, values in

these systems.

A linear correlation was observed between AH®, and AS®,, (Fig. 43 and 44) for the
TX100-polymer and also CTAB-polymer systems. The slope of these lines were 310
K  and 375 K respectively. According to Lumry and Rajender**®, the micellization
can be described as consisting of two forces, one due to the desolvation i.e. due to the
dehydration of hydrocarbon tail of the surfactant molecules and second due to the
‘chemical’ part i.e. the aggregation of the tails of the surfactant molecules to form
micelles. In general, this compensation phenomenon between the enthalpy change
AH®, and the entropy change AS®, in various process can be written as follows
AHCpep = by + by AS®p,

From the thermodynamics

AG®psp = AH®pgp - TAS®pp
therefore by substituting for AH®, in the general thermodynamic relation :-

AG°,,,,, = bl + (bz-T) AS°p,p
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Fig. 43 : Enthalpy—entropy compensation plots for all polymers - TX100 systems. o
PAA; # P(AA-AAc) 85:15; 4 P(AA-AAc) 65:35; m P(AA-AAc) 50:50: O

PAAc.
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Fig. 44 : Enthalpy-entropy compensation plot for all polymers - CTAB system. ©
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Atby =T the AG®psp will be independent of entropic effect i.e. there will be no
structural effect. The b is therefore called isostructural temperature. This can be
obtained from the slope of AH®ys, vs AS°p, plots. It was suggested by Lumry et al>*
that the value of b, in water solution would be between 270-294 K. As seen from Fig.
43 and 44 the value for the TX100-polymer system is around these temperatures.
Such enthalpy-entropy compensation was observed for many physicochemical

21213 and monolayer formation®®. However, the

processes including micellization
‘ CTAB- polymer systems gave very high compensation temperature (375 K), it is
difficult to explain this high value though it probably means that some specific
interaction is present in the system.The ’isostructural temperature has a
thermodynamic significance. It is said to be characteristic of solute-solute and
solvent-solvent interactions i.e. proposed as a measure of the “desolvation” part of the
micellization process, whereas the intercept b; characterizes the solute-solute
interaction, i.e. considered as index of the chemical part of the micellization process.
Hence, the intercept represents the enthalpy effect under the condition AS°®,,=0 i.e.
AGpsp=b; (at the isostructural temperature, the micellization process is totally
independent of any structural change in the system). Hence, it is felt that micellization

is the buik structural property of the solvent and addition of polymers at these

concentrations do not have much effect on the bulk property™ .

Engbens et al.2'® have observed that for n-octyl-B-D-thio glucopyranoside (OTG) -
the free energy of micellization in presence of PPO does not change much. The
endothermic hteraction enthalpy is compensated by a positive entropy change. They
concluded that this AH / AS compeﬁsatory behaviour, probably originated largely
from the release of water molecules from the hydrophobic hydration shells of the

polymers upon interaction with the micelles.

The free energy of micellization AG®n;c in the absence of the polymer and the free

energy of aggregation AG°,, in the presence of polymer can be calculated by the

following relations®®~>2
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AG°gic = (2-0) RT Infemc]

AG°5 = (2-0) RT In [eac]
where « is the degree of ionization of the micelie. Since the values of AG°nic, AH°mic,
AG®g and AH®,, have been obtained, the entropy changes of the corresponding
process AS°mic_'and AS®, can easily be calculated. The addition 6f surfactant to a
polymer solution resuits in the formation of aggregation. The free energy of aggregate
formation AG®,gs would th:enfbe related to free energy of micelle formation AG®y by

AGPgp = AG°y + AG®y

where AG®y is the measure of deymer-surfactant interaction. Therefore, one can
write

cac

AG®=(2-0) RT In
<me

The values of AG®ps for polymer - TX100 systems are given in Tables 31-35. The cac
\)alues for definite polymer - TX100 systems lie around a particular concentration
range irrespective of temperature or polymer concentration. The major contributing
factors for the lower values of cac may be (i) the hydrophobic interactions between
surfactant alkyl chains, which is the main driving force?™*, (ii) the hydrophobic
interactions between the polymer and surfactant alkyl chains, the magﬁ'itude of which
depends on the hydrophobicity of the polymer, (iii) the existence' of specific
. interactions between the polymer segments and the surfactant hydrophilic moieties.
The values of cac depends on the overall effect of all thé above factors. It can be
noted from the Tables 31-35 that the AG®ys values for the PAA - TX100 systems are
much more negative than those of the copolymers and PAAc, which indicate
differences in binding patterns of PAA with nonionic TX100. Due to very low cac
values for PAA-TX100 systems, there are more negative AG®; values. Wang et al 2
observed similar kind of results for the systems of PAA and hydrophobically modified
PAA with both SDS and CTAB. Interestingly, the magnitude of AG®ys obtained by

calorimetric method are similar to our values™®*. Even for CTAB-polymer systems
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(Tables 36-39), especially the copolymers, the AG°y values are more negative -
compared to the homopolymets. Increased hydrophilicity in case of PAA makes the
differences in binding pattern with surfactants.

We also calculated the standard free energy associated for the interaction between
surfactants and polymers, AG® , given by the difference in Gibbs free energy of
transfer of the surfactant monomer from aqueous solution to the micelle in presence
of polymers™
- AG°=AG%p - AG°y

Tables 31-35 gives the AG® values for free energy transfer of micelles from TX100
solutions to PAA, PAAc and copolymer solutions. In all these systems, on the whole
the ﬁée energy of transfer of the surfactant monomer towards the polymer-surfactant
micelle is smaller than the value corresponding to pure micelles, indicating the
addition of these polymers stabilizes the micelle””!. The micelle stabilization is more
pfononnced in case of PAA, which is more hydrophilic compared to other polymers.
Tables 36-39 represent the AG® values in case of CTAB-polymer systems. The large
differences in the AG®% values in case of PAA-CTAB system, indicates favourable

formation of aggregates on polymer strands compared to normal micelles.

(iii) Interfacial parameters :

One of the important features of the surfactant is to get adsorbed at the air / water
interface. The concentration of surfactant is always high at the surface and the Gibbs

equation measures the amount of surfactant adsorbed at the air / water interface.

The Gibbs equation in case of dilute systems is given by?

1 dy
I'=- _ — mol em™
nRT  dlogC
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For the ternary surfactant-polymer-water system, the Gibbs equation becomes’

-dy=I, du;+I”zdu2fI"3dp3
As the polymer conceﬁtration is constant, we can assume
Iidpy +dp;=0

where I'y and I'; refer to water and polymer éxcesses. Thus, even for the temary

systems, the surface tension data can be analyzed by the Gibbs equation. I, ¥, R T and

C are surface tension, gaé constant, absolute teniperature and concentration
‘ respectively The TI'max values for nonionic surfactant (Table 40) increases with

mcrcase in temperature because of the hydration of the ethylene oxide segments of the -

nonionic surfactant decreases with rise in temperature and hence there is the tendency
_to locate at the air / water interface. The Table 40 also gives surface excess values of

PAA-"-TXIOO systems which show similar conformations as nonionic surfactant

system;s and hence I'nay values increase with temperature increase. For the copolymers

and PAAc the 'y« values are given in Tables 41-44. For the copolymers and PAAc

the increase m temperature hinders adsorption at the liquid / air interface. The surface
" excess quantity is lower-as the polymer concentration is increased indicating that the

surfactants prefer relatively more water-polymer matrix than the water-air interface.

The interaction may be physical, chemical or both.

In case of the PAA-CTAB systems, n is considered as 2, which is number of particles
per molecule of the surfactant whose concentration varies with surfactant bulk phase
concentration>'*. T’ max values increase with rise in temperature (Table 45). The
increase in surface exceés values with increase in temperature may be due to partial
shifting of intcracting surfactant molecules from the bulk to the surface due to the
presence of the polymers. However, the change in I'pax is irregular with change in
polymer concentration. In case of the copolymers-CTAB systems the surface excess
values decrease with increase in temperature (Tables 46-48), as is the chadracteristic of
any ionic surfactant. The changes in I'nax values with temperature though is not very

regular, and remains almost same with temperature.
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group helps adsorption to take place and since at higher temperature the surfactant is
less hydrated, comparatively less energy is needed for adsorption to take place”’. The
magnitudes of AG°yq values for Triton X 100 in presence of PAAc are more negative
than PAA. The AG®°,4 values for the copolymers lie in between those of the two
homopolymers. The acrylic acid moiety being more predominant in case of the
copolymers this kind of behaviour is observed. Similar tendencies are observed for
ionic surfactant - polym‘er‘ systems, though the absolute magnitudes are much
lower(Table54-57). The enthalpy and entropy values were calculated by the equation -

AG®y = AH %q - TAS4 - '
The overall entropy changes in the systems Wwere found to be very high. The
adsorption process in case of these polymers with TX100 was found to be
endoth_ermic. In case of CTAB, in presence of the copolymers, the adsorption is
exothermic suggesting -diﬁerences:in' 'binding patterns of these polymers with ionic

and nonionic surfactants.

(v) Viscosity studies :

: Water-soluble polymers are widely used to control the rheological properties of an’
extensive range of aqueous based formulations. The viscosity of polymer solutions is
a very’jimportant and fundamental property and is essential in many industrial
formulations. The intrinsic viscosity [1)] of the polymer solutions were determined

using the Huggins and Kraemer equation'®,

N/ C=[] +K' [} C + e
Inne/C=Mn]-K" [ C+ eovvveverns
. where the specific \)iscosity Nsp = N1 and relative viscosity M = Nsoln/Nsove The
cdefﬁcients K' and K" are direct measures of interactions between the
| macromolecules. K’ - K” are constants for a given polymer / solvent / temperature
' system; Intrinsic viscosity [1]] of the polymers were determined in presence of various

: surfactant concentration (Fig. 45). Polyacrylamide being a nonionic polymer, it was’
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easy to compute intrinsic viscosity [1)] using the above equation. However, the
copolymers and PAAc behaved like polyelectrolytes as mentioned earlier. Their
solutions in water showed unique dependence on concentration. M/C for these

polymers in TX100 solutions increases with dilution. Hence, it was difficult to
compute intrinsic viscosities of these polymers using the Huggins and Kraemer

equations. Therefore, an’' empirical relation the Fuoss-Strauss**° equation was used to

compute [11] for such sjﬁstems.
C 1 B’
Nep T A A’

N/ C=A’/(1-B'C%or c*

whergv A’ and B’ are constants. Straight lines were obtained on plotting (11_¢,p/C)'1
_against C”. The A’ values so obtained are taken as [n]. Some representative plots for

- such systems is given in Fig. 46. The large increase in (1)5/C) values as the solution is - -
diluted is p;obably due to the fact that as the solution is diluted, the polymer
" molecules no longér fills up all the space and the intervening regions extract some of
the mobile ions. Net charges develop in the domains of the polymer molecule causing
“them to expand. As this process continues with further dilution, the expansive forces
, increase. At high dilutions the polymer molecules loose most of their mobile ions and

are extended virtually to their maximum length (leading to more chain-chain

: eﬁtangl‘ement). This leads to high 1/C values™'.

i

. The [1] values for the polymer systems at different TX100 concentrations are given

" in Table 58. The copolymers and PAAc show large [1] values in presence of different -

TXIOO% concentrations. It is a characteristic property of polyelectrolytes to show large
[n] values. The viscosity of these polymers were carried out in presence of an
electrol:yte NaCl. Addition of an électfolyte suppresses the loss of the mobile ions,
: hence the rise in T]4/C at low concentrations was eliminated and conformity with the

! ‘
Huggins and Kraemer equations was restored. From Table 58, it can be seen that for
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the polyelectrolyte like systems, [1] values drastically reduce in presence of NaCl.

For polyacrylamide polymers, [1]] decreases with increase in temperature whereas,

polyelectrolytes show an increase in [1])] with increasing temperature. As mentioned
earlier increase in temperature of polymer solution generates two antagonistic
effects®?*3%, First an increase in temperature generally leads to an increase in solvent

power i.e. solubility increases. This leads to uncoiling of the polymer chains leading
to an increase in {1] with temperature. Sécondly increase in temperature may lower

the rotational barrier thereby enhancing the degree of rofatibn about the skeletal bond,

forcing the molecular chains to assume a more.compact coiled configuration. This
-leads to a decrease in [1]] with increase in temperature. The [1]] values in presence of

the surfactants are lower. This may be an indication that surfactants help to decrease

entanglement of polymer chains and assist in a smoother flow.

In case of the CTAB-polymer systéms, it was difficult to carry out viscosity studies of
the copolymers and PAAc with CTAB in the region of cmc. As mentioned earlier
addition of an jonic surfactant to polymers brings polyelectrolytes close to charge

n?!, However, further addition of ionic

- neutralization which results in phase seperaﬁo
‘ surfactént may resolubilize the precipitate. The properties of a polyelectrolyte play a
major pblg in directihg complex formation and microstructure. Hence, we carried out
viscosity m_easurements at higher CTAB concentrations. Moreover, at these CTAB
- concentrations the pblyelectrolyte like behaviour of the copolymers and PAAc was
_not found. Hence, it was easy to compute intrinsic viscosity [1]] by the Huggins and

' Kraemér‘ﬁ equations (Fig. 47). Table 59 gives [1] values of CTAB-polymer systems

“at ‘diﬁ'e;rent CTAB concentrations. It was found that [N] values for all these systems

_increase with increase in temperature. This behaviour of CTAB at such high

. concentrations is akin to a salt. Increase in temperature results in increase in '

electrostatic repulsions which lead to larger [1]] values with increase in temperature.
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The relative viscosity ), at different concentrations was used for calculations of

voluminosity Vg of a polymer solution at a given temperature. The voluminosity

values give the volume of the solvated molecule in solution. Vg is obtained by

plotting Y against concentration (C g dl”) wherem:323

Y =M -1)/C1.35xn 5 -0.1)
The straight line obtained is extrapolated to C=0 and the intercept yielded Vg. Figs.
48 and 49 gives representative plots for polymers TX100 and polymers-CTAB
system. The shape factor Vv was then calculated from the equation . |
Ml=v Ve. ,
The shape factor and Vg values for the TXIOO polymer systems for different
concentrations are given in Tables 60 and 61. The magnitude of Vg values change
with changes in [1]]. However, V - the shape factor values for the systems which

showed conformity with Huggins and Kraemer equation, were found to be around ~

2.5. The values are independent of temperature and suggesf spherical conformations -

331

of macromolecules in solution™'. However, for the polyelectrolytic systems, the

shape factor values are much larger than ~ 2.5 suggesting conformations other than
spnerical in solutions. In case of CTAB-polymer systems, the v values are ~ 2.5

suggesting spherical conformations in solutions (Tables 62 and 63).

The [n] values of polymers in presence of surfactant and in water were used to

calculate the ratios of expansion factor /3, for the polymer chains in surfactant

solutions.

From the theory of polymers it is known that’®
l.n l =P (role)3fZ M% 83=KMV: 83
where < is a universal constant = 2.84 x 10*' (independent of polymer, temperature

and solvent).
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(r(,z)l/2 = root mean square end to end unpreturbed distance of the polymer coil,
" independent of solvent and temperature. |
M = molecular weight of the polymer

d = expansion factor of the polymer
= Inllinle=@m)
where ln |, is the intrinsic. viscosity of polymer in water and ‘ﬂ' is the intrinsic

viscosity in surfactant solution.

Table 64 gives the expansion factor ratios of the polymers in TX100 both in presence
and absence of NaCl. The values exﬁlain that when the concentration of TX100 is low
the maéromolecules remain contracted, but as the concentration of TX100 increases,
it gets-adsorbed on the polymer and the end to end distance increases resulting in the
expansion of the macromolecular chain. The initial addition of surfactants results in
wrapping of the molecules by the polymer segments and further addition results in
expanéion of: ‘polymer coils due to repulsion among surfactant molecules or micelles
forcing the polymer chains to expand. Such results were observed for SDS-PVP

system’>>* . The schematic representation is shown in Fig. 50.

However, in case of CTAB-polymer systems (Table 65) especially in case of the
copolj}mers, PAAc and CTAB, that initial addition of surfactant results in wrapping
up of the polymer chains and further addition of the surfactant not much changes were
observed. This is probably due to the fact that these polymers behave like

polyelectrolytes and show expanded chain conformations in water. However addition
of surfactant which behaves like a salt lowers [1] values to a great extent. So an

initial addition of the surfactant large 8/3, values are observed but on further addition
of surfactant not much changes in the expansion factor ratios were observed. In case
 of PAA-CTAB systems, the macromolecule PAA remains contracted, but as
concehtration of CTAB increases, due to repulsions of the head group, the

macromolecule expands and hence the expansion factor ratios increase.
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Various activation parameters for the viscous flow were evaluated from the viscosity
data using the Frenkel-Eyring®** equation.
| 1] = Nh/V exp AG”, / RT
where V is the molar volume, N is the Avogadro number, h is the Plancks constant, R
* the gas constant, T the temperature and AG”y; is the-ﬁec energy for the viscous flow.
The above equation can be rewritten as |
In (NV/Nh) = AG” / RT = AHyis / RT - AS%is /R
where AH” ;s and AS™;s are the enthalpy and entropy for the viscous ﬂc;w, In (MV/Nh)
when plotted against the reciprocal of temperature yields a linear graph (Fig. 51,52)
with the slope and intercept yielding AH" i 'andA AS?\is respectively. As mentioned in
chapter-3, the 11V/Nh is a unitless quantity. On plotting AH”;s and AS™; values
against concentration of polymer and extrapolating it to C=0, AH™ ;s and AS™;
values are obtained. AG™,;s values are then computed by the thermodynamic relation :
AG* iy = AH™y;, - TAS™ |
All the activation parameters obtained at infinite dilution for the TX100 polymer
systems are given in Table 66. The AG™,;5 values remain constant for all the systems
studied. Even for the CTAB-polymer (Table 67) the magnitude of AG™,; values- |
remain the same. However, the AH™;; and AS“V;S values vary from system to system.
Again on plotting AH™;; and AS™; valﬁes for all systems, a linear _plot was
obtained. The slope of tfle plot for polymer-TX100, and polymer-CTAB systems
were 305 K and 304 K respectively. At this temperature, it is assumed that the free
energy of activation for the viscous flow becomes independent of entropic forces and

solely depends on enthalpic factors.

(vi) Cloud point measurements :

Cloud points (CP) are the characteristics of nonionic surfactant systems, and are the
manifestations of the solvation / desoivation phenomenon of nonionic surfactant
solutions. The desolvation of the hydrophilic groups of the surfactant leads to the

formation of cloud point in surfactant solution. A number of workers have carried out
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cloud point studies of TX100 in presence of additives. Valaulikar and Manohar®*’

have shown that at very small concentration of NaCl the CP of TX100 does not
change much. Small amounts of ionic surfactant increase the CP of TX100. The
present studies were carried out on 1% Triton X100 using various polymer at different
concentrations as the additives. Low polymer concentrations (all the polymers) did
not have much effect on CP of TX100 i.e. it remained around 65.5°C. Cloud point of
1% TX100 solution is 66.0°é. However, in presence of higher concentrations of PAA
(Fig. 53), the cloud point is very low. At even higher concenﬁations of PAA ie. 8%
(w/v} solution the phase separation occurs at room temperature itself. PAA lowers
the cloud point effecti\}éiy. This is because of the removal of water by the polymers
which helps the TX 100 micelles to come near each other and.eﬁ'ectively decreases the
cioud point. However, PAAc and the 50:50 P(AA-AAc) ratio of the copolymer show
some elevation of the cloud point. We believe that the polyelectrolyte like nature of
these polymers induce ion—dipole. or dipole-dipole interaction with water molecules
and these water molecules are probably act as a bridge between different PS-micellar

3% The cloud point being a result of intermicellar interaction®*’, higher

. complexes
' temperature is needed to remove the bridging water molecules. Hence, the higher

cloud ‘point in presence of these polymers.

(vii) Steady state fluorescernce qiienching :

) This method of determination of micellar aggregation number was originally

developed by Turro and Yekta'®!

. The‘following expefimental conditions must be
~ achieved; (i) the fractions of the fluorescent probe (F) and the ‘quencher (Q) dissolved
- in water are negligible; (ii) F and Q do not form grouﬁd state complexes; (iii) Q is a

very efficient quencher of F; (iv) Q has a ncgligiblé absorption at the wavelength of

‘1 ‘excitativon over the entire range of conéentrations employed and (v) the micellar
| aggregates are not too large (N, < 100). One assumes instantaneous quenching of F

by Q, so that the extent of decrease of fluorescent intensity providés a measure of the

number of micelles containing F and Q. Both F and Q are chosen to have a high

affinity for the micelles and in data analysis one assumes a Poisson distribution of F
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and Q among the micelles. Under these circumstances the emission intensity I, of the
probe in the presence of quencher Q is related to (Qr) where Qr is the total quencher
concentration, L is the fluorescent intensity in the absence of quencher. M is the total

micelle concentration.

[Qrl

I=Ipexp
M]
The micelle concentration is given by the following relation, where Ny, is the
aggregation number, '[S] the total surfactant concentration and cmc the critical
micellar concentration.

[S] - cme

[M] =
o ' Nagg
Combining the above 2 equations

[Qr]  Nog [Qil
M] [S] - cme

Inly/l=

Thus, the slope of a plot of In (I¢/I) as a function of quencher concentration allows the
determination of Nagg. Aggregation numbers for TX100 were determined in presence
of these polyméfs as per the mefhod mentioned above. Fig. 54 represents aggregation
number values in presence of increasing percentage of PAA in the feed. The
éggregation number of TX100 in presence.of polymers decreases, which is a clear
indication of PS interaction®. Zana et al>*® have shown that »ethyl hydroxy ethyl
cellulose (EHEC) interacts with cationic surfactants, such as CTAX (X = Cl, Br).
They demonstrated that the polymer-bound micelles have a largér degree of ionization
and a lower aggregation number than free micelles. In our systems the three
copolymers have higher aggregation numbers compared to the homopolymers may be
attributed to the extended chain conformations in the copolymers hence more binding
sites, hence an increase in aggregation number. As mentioned earlier also, polymer
chains/are wrapped around the surfactant aggregates, with their hydrophobic segments

penetrating into the Stern layer of the aggregates by displacing the water molecule.
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(viii) Small angle neutron scatfering studies (SANS):

SANS 1s an ideal technique for studying the structure (shape and size) of the colloidal
particles on a length scale of ~ 10-100 A. The instrument at Cirus®™ reactor measures
particle sizes of the range 20 ~ 150 A. The small anglé neutron écatt‘erihg.experiments
‘have become very useful techniques due to the specific properties of neutrons since
they are (i) neutral and are able to examine materials in buHé; (ii) have energy similar
to energy of atoms in solids and therefore cépable of investigating atomic
‘movements; (iii) they scatter differently from ‘H’ and ‘D’ and hence the contrast
variation is possible. The strength of SANS in the study of hydrogenous materials lies
in the fact that contrast between the particle andsolvent can be easily varied®”. The
scattering amplitude of hydrogen is negative (- 0.3723) and that for deuterium is
‘positive (0.67), it is thus possible to have a good'cbntrast between the molecules and
: the solvent, by deﬁtetating either the molecule or the solvent.

178 The polymer

. . R |
Few workers have carried out SANS measurements of P-S systems
‘used was PEO with SDS. They used deuterated SDS to have contrast variation. The
.complex of SDS-PEO is formed, the polymer web which has size range of 200 to

1000 A and surfactant micelles with radii of 20 A'™

. Through these interactions the
- polymér web adapts itself to the spacings of the micellar array where the micelles are
collected at short intervals along the polymer chains, hence forms necklace like

structure.

In the present studies measurements were carried out for PAA with CTAB and SDS.
| SDS and CTAB show good scattering intensities, however the signals obtained by
. PAA were weak i.e. it showed very low scattering intensity (Fig. 55). In the presence

of PAA also not much change in the scattering intensities are observed for the

surfactants (Fig. 56,57).The calculation of the aggregation number based only on the

361
d360

peak };osition is discussed™ . This method follows the approach given by Chen

et al. They showed that the inter particle distance D between the micelles is given by
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D = 1/42 (4000 n/ N, C) '? 10°A
where n is the mean aggregation number and N, is the Avogadro number.When the
expression assumes that micelles are arranged in a face-centre cubic (FCC) lattice.
Then the peak position for such situation is related toD by the relation
QuD= 6" =7.695
Thus the aggregation numbfar can be calculated from the knowledge of the peak

position Q.

Assuming a simple cubic packing (SC) in the micellar solution, the aggregation
number n was calculated using the relation

Qu=2x 41 (N,C /4000 n)'® x 10 A7
Another empirical relation given by W%
QD = 6.8559 + 0.0094D

n is calculated using the above three models namely FCC, SC packing and the

et al. for calpulaﬁon ofn

empirical relation. The aggregation number of SDS obtained by the FCC equation
was 80, from the SC structure 62 and empirical relation was 80. In presence of PAA
the n do not change much, since the relative position of Qn do not change to a greaf
| extent. The n for CTAB were from FCC 160; SC 123 and empirical relation was 159.
In presénce of PAA the values were 155, 119 and 151 respectively. The n values do
not change much in presence of polymers, since the scattering intensities of CTAB

and SDS do not vary much in presence of PAA.

CONCLUSIONS

The surface tension and conductance ﬁmeaisurements both show two critical
concentrations for the PS systems. The first break is the critical aggregétion
concenftration and the second one is the polyme; saturation point. The PAA-TX100
behave similar to a nonipnic surfactant complex whereas the copolymers and PAAc
have different binding paﬁems with TX100. The conductance as well as surface

tension measurements were carried out for polymer-CTAB systems. For PAAc and
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CTARB, being polyelectrolyte - surfactant of opposite charges, it was difficult to carry

.~ out studies in the micelle formation region due to phase separations.

The thermodfnamic parameters were evaluated at psp. The AG®,, becomes more
negative with increase in temperature indicating spontaneous micelle formation both
in presence and absence of polymers. The PAA-TX100 show large entropy values,
however due to the pofyce-lectrolytic nature of the copolymers and PAAc the
randomness decreases in those systems. The CTAB systems in presence and absence
of polymers show negative enthalpy values. However, the magnitude of enthalpy in
case of PAA-CTARB is less negative and at higher concentrations of PAA, it becomes
,positfve. AHCpsp-AS°ps, compensation was observed, for all the solvent systems with
an isostructural temperature of ~ 300 K. Changes in I'max and Apin values again

indicate differences in binding patterns of PAA and other polymers with TX100.

"Viscosity . studies indicate that PAAc and the copolymers are polyelectrolytic.
However, the polyelectrolytic nature is curbed in i)resence of NaCl. Also at higher
concem.trations of CTAB, this kind .of polyelectrolytic nature is not seen. The
‘e‘,xpansion factor ratios for polymer-TX100 sysiems indicate that end-to-end distance
first décreases, on addition of surfactant, further addition of surfactant results in
increase of end-to-end distance. However, in case of CTAB-polymers systems- the
' end-to-end distances continued to increase though the rate of increase is not much at

higher concentrations of CTAB.

\Aggr'egation number of TX100 decreases sharply in presence of Hoinopolymers
;thou'gh higher aggregation number is obtained in presence of the copolymers
_indicating extended chain cc')nfox;mations in" their case. Cloud point values of 1%
i TX100 decreases sharply in presence of high concentrations of PAA. The SANS
- experiments gave n values by means of different empirical relations. The n does not
. vary much in presence. of the polymers due to poor scatterix{g intensity from the

* polymers.



