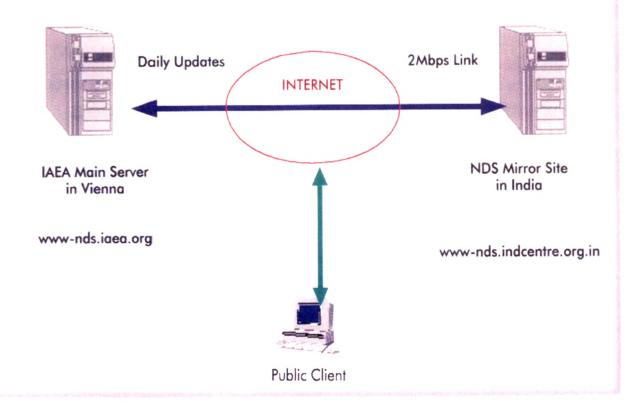
CHAPTER 7

The Indian Experimental Nuclear Physics data compilation into IAEA-EXFOR	database
7.1 Introduction	146
7.2 What is EXFOR?	148
7.3 Structure of the EXFOR-Exchange Format	149
7.3.1 Structure of an EXFOR file and Definition of Subentry	149
7.3.2 Identification Files, Entries and Subentries	150
7.4 Quantities in EXFOR and EXFOR retrieval (WWW/ZVView)	152
7.5 List of newly created EXFOR entry for the Indian experimentally measured	
Nuclear Physics data into IAEA-EXFOR database, NDS, IAEA	154
7.5.1 Exfor entries related to the present work	156
7.6 Summary and Conclusions	170
References	171

ł

, ·

7.1 Introduction


In the International Nuclear Data Committee (INDC) meeting in 2006 [1], experts recommended that major nuclear data user countries, such as India, China and Russia also contribute to the EXFOR [2] file entries for experimental nuclear data generated in their respective countries. India has become a member of International Network of Nuclear Reaction Data Centres (NRDC) in September 2008 [3]. With the very strong demand and recommendation from INDC, India has considered the classical nuclear data physics activity of EXFOR compilation into IAEA-EXFOR database [4] as an important and major activity of the Nuclear Physics Data Centre of India (NDPCI) [5]. Presently, NDPCI has a responsibility to continue the EXFOR compilation of Indian experimentally measured and published nuclear physics data activity and take up more classical nuclear data physics responsibilities. It has been noted by NDPCI that many of the experiments on neutron induced measurements performed in national laboratories, institutions and in some of the universities in India remain to be coded in EXFOR format submittal to the IAEA-EXFOR database. The identification for coding into EXFOR of all the suitable Indian articles published in the literature has been done by the IAEA-NDS staff.

The EXFOR activity in India got a boost with BARC, Mumbai successfully organizing first EXFOR national training workshops in 2006 sponsored by the DAE-BRNS (Department of Atomic Energy-Board of Research in Nuclear Sciences) In this workshop, more than 40 delegates (experimental nuclear scientists, university faculty, research and postgraduate students) took active part and got a "first time" exposure to a classical nuclear data physics activity of EXFOR compilation culture.

So far four successful workshops on EXFOR have been held: 2006 (Mumbai), 2007 (Mumbai), 2009 (Jaipur) and 2011(Chandigarh). This EXFOR activity represents introduction of a new Experimental Nuclear Physics Database culture in India. The importance of such highly focused training courses on EXFOR is well recognized in the nuclear physics community. The author has attended all four national workshops on EXFOR compilation of Indian nuclear physics data and contributed into IAEA-EXFOR database. In fact, author has worked as trainer in the last two workshops (2009, Jaipur and 2011, Chandigarh) for the M. Sc, M. Phil and Ph. D students to teach them the EXFOR compilation through EXFOR-editor. The author has been continuing EXFOR compilation activity as an important part of his research work since 2006. As of now, the author

has contributed more than 30 new EXFOR entries into IAEA-EXFOR database which includes fission yield data measured by Radiochemistry lab, BARC, hybrid surrogate ratio approach {²³³Pa(n,f)}, fission anisotropy measurement by Nuclear Physics Division, BARC, heavy ion fusion data from Indian universities, Photo-nuclear data from Kharghar, Navi Mumbai and from Pohang, South Korea and many more apart from his own measured data compilation.

The details of new Indian EXFOR entries are, available in "Full EXFOR Compilation Statistics", in the IAEA-NDS site: http://www-nds.iaea.org/exformaster/x4compil/progress India.htm. The EXFOR database is also available in the IAEA-India mirror website: http://www-nds.indcentre.org.in. An article on the mirror website is available [6]. A schematic of regional IAEA-NDS nuclear data mirror site set-up in India is given below in Fig. 7.1

IAEA NDS MIRROR SITE SET-UP

Fig. 7.1 A schematic of regional IAEA-NDS nuclear data mirror site set-up in India.

The new Indian Exfor entries created by the author have been presented in several national/international workshops [7-11].

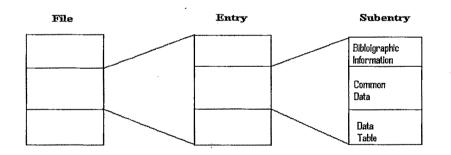
7.2 What is EXFOR?

An "EXFOR" is the compilation of published experimental nuclear reaction data for incident neutrons, gammas and charged particles on various targets. Nuclear Data evaluators, applied users and experimentalists widely use this data. There is specific format in which the experimental data is coded into the EXFOR system for ready recovery and comparison with evaluated nuclear data. The nuclear data coded into EXFOR database are the numerical results of individual measurements as reported by the authors. EXFOR is derived from "Exchange Format" – experimental nuclear reaction data compiled regularly through the network of nuclear reaction data centers: (http://www-nds.indcentre.org.in/exfor/). The EXFOR library contains an extensive compilation of experimental nuclear reaction data. Neutron reactions have been compiled systematically since the discovery of the neutron, while charged particles (including reaction of interest to heavy ion fusion research and photon reactions) have been covered less extensively. The EXFOR library contains results of numerical nuclear data evaluators, applied users, experimentalists, and theorists. EXFOR retrievals are available on the web from the sites of the major data centers and CD-ROM.

Q

The EXFOR format allows a large variety of numerical data tables with associated textual information, i.e., bibliographic and descriptive information, to be transmitted in a format:

- that is machine-readable (for checking and processing);
- that can be read easily by nuclear scientists and technologists (for updating, evaluating, etc.).


The format was designed for flexibility in order to allow a wide range of data types to be exchanged and stored. A series of keywords and codes have designed to implement this. These keywords and codes are defined in the EXFOR dictionaries.

7.3 Structure of the EXFOR-Exchange Format

The EXFOR format has been designed for flexibility rather than optimization of data processing in order to meet the diverse needs of the nuclear reaction data centers. The EXFOR format is continuously refined and expanded to include new types of data as the need arises. This is accomplished through discussions among the member centers of the NRDC. This section describes the general structure and the format of an EXFOR exchange file. The details of this section have been taken from Ref [12].

7.3.1 Structure of an EXFOR file and Definition of Subentry

An exchange file contains a number of entries. Each entry is divided into a number of subentries. The subentries are composed of bibliographic information and data. The data is further divided into data values that are common throughout the subentry (common data) and a table. data The file therefore. considered of following may. be to be form:

Definition of Subentry

The originating center is responsible for dividing entries into appropriate subentries prior to transmission. This ensures that an entry is divided into subentries in a unique manner, which may be referenced by all centers.

1. A subentry is defined as a data table as a function of one or more independent variables: *i.e.*, X, X' vs. Y with associated errors for X, X' and Y (e.g., X = energy; X' = angle; Y = differential cross section) and any associated variables (e.g., standard).

2. Variables may appear either in the common data portion of a subentry (when uniformly applied to all points), or as a field of the data table (when applied point-wise).

3. For some data, the data table does not have an independent variable X but only a function Y. (*Examples*: Spontaneous \overline{v} ; resonance energies without resonance parameters)

7.3.2 Identification Files, Entries and Subentries

In order to track, access, and identify data within the EXFOR Exchange System, the following labeling systems have been adopted for files, entries and subentries.

1. An EXFOR Exchange File is labeled using four-character file identification.

2. An entry is labeled using a five-character accession number.

3. A subentry is labeled using an eight-character sub accession number.

Each of these labels includes a center-identification character as the first character in the string. The table on the following page lists the center-identification characters that have been assigned. These characters define both the center at which the information was compiled and the type of data compiled.

0	Preliminary	For internal center use
1	NNDC (Brookhaven)	Neutron nuclear data
2	NEA-DB (Paris)	Neutron nuclear data
3	NDS (Vienna)	Neutron nuclear data
4	CJD (Obnisk)	Neutron nuclear data

A MOAN THE COMMAN AMOMMANUM CAMAGE GUIDE	Table 7	.1 Center	Identification	Characters
--	---------	-----------	----------------	------------

9	NDS (Vienna)	Dictionary transmission
A	CAJaD (Moscow)	Charged-particle nuclear data
В	KaChaPag (Karlsruhe)	Charged-particle nuclear data
С	NNDC (Brookhaven)	Charged-particle nuclear data
D	NDS (Vienna)	Charged-particle nuclear data
Е	JCPRG (Sapporo)	Charged-particle nuclear data
F	NPDC (Sarov)	Charged-particle nuclear data
G	NDS (Vienna)	Photonuclear data
Н	NNDC (Brookhaven)	Special internal use for relativistic particle reaction data
L	NNDC (Brookhaven)	Photonuclear data
М	CDFE (Moscow)	Photonuclear data
N	NEA-DB (Paris)	Special use for memos only
0	NEA-DB (Paris)	Charged-particle nuclear data
Р	NNDC (Brookhaven)	Charged-particle nuclear data from MacGowen file
Q	CJD (Obnisk)	Photonuclear data
R	RIKEN	Charged-particle nuclear data
S	CNDC	Charged-particle nuclear data
Т	VNIIEF/NNDC	Charged-particle nuclear data
V	NDS (Vienna)	Special use for selected evaluated neutron data "VIEN" file.

7.4 Quantities in EXFOR and EXFOR retrieval (WWW/ZVView)

There are many nuclear data physics quantities that can be entered in EXFOR database.

- Integral and partial cross sections (incl. excitation functions, spectrum-averaged data, ratios etc.)
- Differential cross sections of many types, including angular distributions and Legendre coefficients, secondary particle spectra etc.
- Resonance parameters
- Fission product yields, Nu-bar, fission quantities
- Product yields and thick target yields
- Reaction rates, resonance integrals

New EXFOR file		×
ENTRY: Empty lines in DAT	ок	
Subentry number : 🙎 🚊		Cancel
SUBENTRY 1 contents BIB section TITLE FACILITY MONITOR AUTHOR SAMPLE FINC-SOURCE INSTITUTE DETECTOR ANALYSIS REFERENCE METHOD FERR-ANALYS	COMMON section Active Column number :	
SUBENTRY 2 BIB section COMMON section DA IF REACTION IF Active IF SAMPLE IF Active IF DETECTOR Column number : IF FLAG I IF ERR-ANALYS I IF STATUS I	ATA section . Column number : 1 ÷ Row number : 1 ÷	

Fig.7. 2 Creation of EXFOR file using EXFOR-Editor

EXFOR retrieval (WWW/ZVView)

The Exfor entries are created using an EXFOR-Editor. A typical view for creation of EXFOR entry using an editor is given in Fig. 7.2. The EXFOR data can easily retrieved through website: http://www-nds.iaea.org/exfor Fig. 7.3 shows the typical example of ⁵⁶Fe(n,p) cross-section experimental data with ENDF/B-VI evaluation.

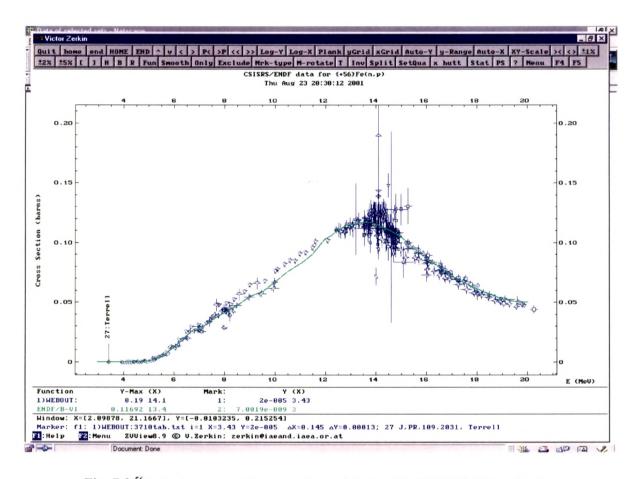


Fig. 7.3 ⁵⁶Fe(n,p) cross-section experimental data with ENDF/B-VI evaluation

7.5. List of newly created EXFOR entry for the Indian experimentally measured Nuclear Physics data into IAEA-EXFOR database, NDS,

Since 2006, the author has contributed more than 30 new Exfor entries for Indian experimental nuclear physics data into IAEA-EXFOR database. All these new Exfor entries have been duly approved by corresponding authors of the journal paper before its communication to Nuclear Data Section, IAEA. The Table 7.2 presents some of the interesting and newly created Exfor entries by author.

Sr. No	Entry No.	Title of the Paper	Authors	Reference
1.	33020	Fragment angular momenta in low and medium energy fission of ²⁴² Pu	B.S.Tomar et al.,	J,ZP/A,327,225, 1987
2.	33021	Effect of shell closure proximity on fragment angular momenta in ²⁴¹ Pu(n,f)	S.P.Dange et al.,	J,JRN,108,269,1 987
3.	33022	Fission fragment angular momentum in the spontaneous fission of ²⁴⁴ Cm	H.Naik, R.J.Singh and R.H.Iyer	J,RCA,92,1,200 4
4.	D6044	Fragment angular momenta in low and medium energy fission of ²⁴² Pu	B.S.Tomar et al.,	J,ZP/A,327,225, 1987
5.	D6067	Large pre-equilibrium contribution in A + ^{nat.} Ni interactions at \sim 8-40 MeV	Abhishek Yadav et al.,	J,PR/C,78,0446 06,2008

Table 7. 2 Newly created Exfor entries in IAEA-EXFOR database

6.	33023	Determination of the ²³³ Pa (n,f) reaction cross-section from 11.5 to 16.5 MeV neutron energy by the hybrid surrogate ratio approach	B.K.Nayak et al.,	J,PR/C,78,0616 02,2008
7.	D6075	Determination of the ²³³ Pa (n,f) reaction cross-section from 11.5 to 16.5 MeV neutron energy by the hybrid surrogate ratio approach	B.K.Nayak et al.,	J,PR/C,78,0616 02,2008
8	33033	Measurement of the neutron capture cross- section of ²³² Th using the neutron activation technique	H.Naik, P. M. Prajapati et al.,	J,EPJ/A,47,51, 2011
-9	33036	²³³ Pa(2nth, f) cross- section determination using a fission track technique	H. Naik, P. M. Prajapati et al.,	J,EPJ/A,47,100, 2011
10	G0014	Post-neutron mass yield distribution and Photo- neutron cross- section measurements in ²⁰⁹ Bi with 65-MeV	H. Naik et al.,	J,KPS,52,934, 2008
11	33037	Measurement of neutron-induced reaction cross-sections in zirconium isotopes	P. M. Prajapati, H. Naik et al.,	J,NSE,171,78 (2012)
12	33040	Measurement neutron capture cross-sections of ²³² Th at 5.9 MeV and 15.5 MeV	P. M. Prajapati, H. Naik et al.,	J,EPJ/A,48, 35,2012

7.5.1 Exfor entries related to the present work

In this section, the detailed Exfor entries have been given which are directly related to the present research work.

1. Measurement of the neutron capture cross-section of 232-Th using the neutron activation technique.

TRANS	20110607	10000
ENTRY	33033 20110505	33033
SUBENT	33033001 20110505	33033
BIB	13 54	33033
TITLE	Measurement of the neutron capture cross-section of	33033
	232-Th using the neutron activation technique	33033
AUTHOR	(H.Naik,P.M.Prajapati,S.V.Surayanarayana,	33033
	K.C.Jagadeesan, S.V.Thakare,D.Raj,V.K.Mulik,	33033
	B.S.Sivashankar,B.K.Nayak, S.C.Sharma,S.Mukherjee,	33033
	Sarbjit Singh, A. Goswami, S. Ganesan, V. K. Manchanda)	33033
INSTITUTE	(3INDTRM, 3INDBDA, 3INDPOO)	33033
REFERENCE	(J,EPJ/A,47,51,2011)	33033
FACILITY	(VDG, 3INDTRM) BARC-TIFR Pelletron facility at TIFR,	33033
	Mumbai	33033
SAMPLE	The samples used for irradiation were natural 232-Th	33033
	metal foil and natural In metal foil, which were	33033
	wrapped separately with 0.025 mm thick aluminum foil	33033
*	to prevent contamination from one to the other. The	33033
	size of 232-Th metal foil was 1.0 cm**2 with	33033
	thickness of 29.3 mg/cm**2, whereas indium metal	33033
	foil is also of same size with thickness of 2.6	33033
	mg/cm**2.	33033
DETECTOR	(HPGE) The gamma-rays of fission/reaction products	33033
•	from the irradiated Th and In samples were counted	33033
	in an energy and efficiency calibrated 80 c.c. HPGe	33033
	detector coupled to a PC-based 4K channel analyzer	33033
METHOD	(ACTIV,GSPEC) The 232Th(n,g) reaction cross-section	33033
	at average neutron energy of 3.7 MeV and 9.85	33033

Ref: J, EPJ/A, 47, 51 (2011)

	MeV has been determined for the first time	33033
	using activation and off-line gamma-ray	33033
	spectrometric technique.	33033
TNC-SOURCE	(P-LI7) The neutron beam was obtained from the	33033
	7-Li(p,n) reaction by using the proton beam main	33033
	line at 6 m above the analyzing magnet of the	33033
	Pelletron facility to utilize the maximum proton	33033
	current from the accelerator	33033
ANALYSIS	(AREA) The observed photo-peak activity (Aobs) of	33033
	gamma-lines was obtained using PHAST peak fitting	33033
• • •	programme. The nuclear spectroscopic data used in the	33033
	present work for the calculation of 232-Th(n,g) and	33033
	232-Th(n,2n) reaction cross-sections are taken from	33033
	the refs. [53, 54].	33033
ERR-ANALYS	(ERR-T) The uncertainties associated to the	33033
	measured cross-sections come from the combination of	33033
	two experimental data sets. This overall uncertainty	33033
	is the quadratic sum of both statistical and	33033
	systematic errors.	33033
(ERR-1)	The systematic errors are due to	33033
	uncertainties in neutron flux estimation (~4%).	33033
	(ERR-2) The irradiation time (~2%)	33033
	(ERR-3) The detection efficiency calibration (~3 %)	33033
,	(ERR-4) The half-life of the fission products and	33033
	the gamma-ray abundances (~2%).	33033
ŧ	(ERR-SYS)The total sytematic error is about ~6%.	33033
STATUS	(APRVD)Entry approved by Dr. H. Naik	33033
HISTORY	(20110505C)Compiled by Mr. Paresh Prajapati and Dr. S.	33033
	Mukherjee, The M. S. University of Baroda,	33033
,	Vadodara - 390 002.	33033
ENDBIB	54 0	33033
COMMON	5 3	33033
ERR-1	ERR-2 ERR-3 ERR-4 ERR-SYS	33033
PER-CENT	PER-CENT PER-CENT PER-CENT	33033

157

.

4.	2.	3.	2.	6.	33033
ENDCOMMON		3	0		33033
ENDSUBENT	61	L	0		33033
SUBENT	33033002	2 2011050	5		33033
BIB		3 17	6		33033
REACTION	(90-TH-232	(N,G)90-TH-	233,,SIG,,SI	?A) ·	33033
DECAY-DATA	(90-TH-233,	21.83MIN, D	G,86.5,0.027	7)	33033
INC-SPECT	Fig .5, New	itron spect	rum from the	e 7-Li(p, n) reaction	33033
·	at $Ep = 5$.6 MeV calc	ulated using	g the results of	33033
• •	Meadows and	d Smith of	reference 47	1 of the paper.	33033
•	EN	Neutron Fl	ux		33033
•	MEV	mb/Sr-MeV			33033
	0.1	7.79E-04			33033
	0.2	0.0014		•	33033
	0.3	0.00189			33033
	0.4	0.00225			33033
	0.5	0.0025			33033
	0.6	0.00267			33033
·	0.7	0.00275			33033
	0.8	0.00276			33033
	0.9	0.00272		. · · · ·	33033
	1	0.00263			33033
	1.1	0.0025			33033
	1.2	0.00235			33033
	1.3	0.00217			33033
!	1.4	0.00198			33033
	1.5	0.00178			33033
	1.6	0.00157			33033
	1.7	0.00136		• •	33033
	1.8	0.00114			33033
	1.9	9.38E-04			33033
:	2	7.38E-04			33033
	2.1	5.46E-04			33033
	2.2	3.63E-04			33033
	2.3	1.90E-04			33033

`

.

	2.4	2.04E-10	33033
	2.5	8.07E-09	33033
1	2.6	2.14E-07	33033
	. 2.7	3.82E-06	33033
	2.8	4.56E-05	. 33033
	2.9	3.65E-04	33033
1	3	0.00196	33033
:	3.1	0.00705	33033
	3.2	0.01701	33033
	3.3	0.02777	33033
	3.4	0.0323	33033
•	3.5	0.03531	33033
,	3.6	0.05984	33033
	3.7	0.12234	33033
	3.8	0.19292	33033
	3.9	0.20829	33033
	4	0.15118	33033
	4.1	0.07358	33033
	4.2	0.02401	33033
	4.3	0.00525	33033
	4.4	7.70E-04	33033
	4.5	7.57E-05	33033
	4.6	4.98E-06	33033
	4.7	2.20E-07	33033
	4.8	6.51E-09	33033
1	4.9	1.29E-10	33033
,	5	1.72E-12	33033
	5.1	1.53E-14	33033
	5.2	9.16E-17	33033
	5.3	3.67E-19	33033
	5.4	9.85E-22	.33033
	5.5	1.77E-24	33033
	5.6	2.14E-27	33033
	Fig. 6,Ext	rapolated neutron spectrum in 7Li(p, n	33033
	reaction a	t $Ep = 12$ MeV obtained from the neutro	on 33033

spectrum	n at Ep = 10 MeV of reference 46 of the paper.	33033
EN	Neutron Flux	33033
MEV	mb/Sr-MeV	33033
5.228	4.41928	33033
5.278	5.04291	33033
5.328	6.01152	33033
5.378	7.55317	33033
5.428	9.6155	33033
5.478	11.48641	33033
5.528	12.35986	33033
5.578	11.64606	33033
5.628	9.29659	33033
5.678	5.64977	33033
5.728	2.69334	33033
5.778	1.59589	33033
5.828	1.61459	33033
5.878	1.86877	33033
5.928	1.64885	33033
5 .978	1.21338	33033
6.028	1.02771	33033
6.078	1.01758	33033
6.128	0.98905	33033
6.178	0.90555	33033
6.228	0.81651	33033
6.278	0.76498	33033
6.328	0.74102	33033
6.378	0.71093	33033
6.428	0.66059	33033
6.478	0.62557	33033
6.528	0.62654	33033
6.578	0.62931	33033
6.628	0.59609	33033
6.678	0.53383	33033
6.728	0.47473	33033
6.778	0.44115	33033

.

6.828	0.42253		33033
6.878	0.40167		33033
6.928	0.37026		33033
6.978	0.34264		33033
7.028	0.32534		33033
7.078	0.31659		33033
7.128	0.31049		33033
7.178	0.29162		33033
7.228	0.2498		33033
7.278	0.21012		33033
7.328	0.20051		33033
7.378	0.20467		33033
7.428	0.19287		33033
7.478	0.15854		33033
7.528	0.12748		33033
7.578	0.12762		33033
7.628	0.15781		33033
7.678	0.16381		33033
7.728	0.13334	·.	33033
7.778	0.09563		33033
7.828	0.06795		33033
7.878	0.04929		33033
7.928	0.03749		33033
7.978	0.03106	· · · ·	33033
8.028	0.02881	• •	33033
8.078	0.02955		33033
8.128	0.0322		33033
8.178	0.03599		33033
8.228	0.04029		33033
8.278	0.0443		33033
8.328	0.04673	· · ·	33033
8.378	0.04623		33033
8.428	0.04142		33033
8.478	0.03094		33033
8.528	0.01527		33033

.

8.578	0.01137		33033
8.628	0.0303		33033
8.678	0.05288		33033
8.778	0.05851		33033
8.828	0.04877		33033
8.878	0.03774		33033
8.928	0.02765		33033
8.978	0.01968		33033
9.028	0.01494		33033
9.078	0.01457	• .	33033
9.128	0.0197		33033
9.178	0.03147		33033
9.228	0.05186		33033
9.278	0.08576		33033
9.328	0.12897		33033
9.378	0.15814		33033
9.428	0.14774		33033
9.478	0.13522		33033
9.528	0.45942		33033
9.578	1.48469		33033
9.628	2.91008		33033
9.678	4.57921		33033
9.728	6.12017		33033
9.778	6.45023		33033
9.828	5.31394	· .	33033
9.878	3.47149		33033
9.928	2.39912		33033
9.978	2.85879		33033
10.028	2.529		33033
10.078	5.1848		33033
10.128	12.08801		33033
10.178	13.36977		33033
10.228	11.93188		33033
10.278	9.48661		33033
10.328	6.7653		33033

- ·

.

	10.378 4.03077	33033
	10.428 1.17284	33033
	10.478 0.06397	33033
	10.528 -0.03379	33033
	10.578 0.05033	33033
		33033
ENDBIB	176 0	33033
NOCOMMON	0 0 .	33033
DATA	4 2	33033
EN	EN-ERR DATA ERR-T	33033
MEV	MEV MB MB	33033
3.'	7 0.3 16.18 0.87	33033
9.8	5 0.38 2.18 0.12	33033
ENDDATA	4 0	33033
ENDSUBENT	185 0	33033
SUBENT	33033003 20110505	33033
BIB	4 24	33033
REACTION	(90-TH-232 (N,G) 90-TH-233, ,SIG)	33033
DECAY-DATA	(90-TH-233,21.83MIN,DG,86.5,0.027)	33033
STATUS	(TABLE)Data taken from the Table.1 and 2	33033
	(DEP,33033002) spectrum averaged cross-section	33033
CORRECTION	It can be seen from figs. 5 and 6 that the	33033
	contribution to the neutron flux from the tail	33033
	region is 4 % and 49 % at the proton energy of 5.6	33033
	MeV and 12.0 MeV, respectively. In view of this, the	33033
	contribution from the tail region to the $232-Th(n,g)$	33033
	reaction has been estimated using the ENDF/B-VII,	33033
	JENDL-4.0 and JEFF-3.1 by folding the cross-sections	33033
	with neutron flux distributions of figs. 5 and 6. The	33033
	contributions $232-Th(n, g)$ to the reaction from the	33033
	above evaluation at $Ep = 5.6$ MeV are 5.34, 5.57 and	33033
	5.03 mb from ENDF/B-VII, JENDL-4.0 and JEFF-3.1	33033
	respectively. Similarly at Ep = 12 MeV, 232-Th(n, g)	33033
	the reaction cross-sections from the above evaluation	33033
	are 0.798 and 0.876mb from ENDF/B-VII and JENDL-4.0.Th	e33033

163

•

	actual value	e of the 232	-Th(n, g) 1	ceaction	cross-sectio	n33033
	due to the i	neutrons fro	m the main	peak of	the n0 and n	133033
	groups of th	ne neutron s	pectrum is	obtained	l after	33033
	subtracting	the average	cross-sect	tion due	to neutrons	33033
•	from the tax	il region fr	om the befo	ore-menti	oned	33033
	experimental	l data.				33033
ENDBIB	24	0				33033
NOCOMMON	0	0				33033
DATA	4	. 2				33033
EN	EN-ERR I	DATA E	RR-T			33033
MEV	MEV	MB M	В			33033
3.	7 0.3	10.9	0.9			33033
9.8	0.38	1.35	0.12		-	33033
ENDDATA	4	0				33033
ENDSUBENT	33	0				33033
SUBENT	33033004	20110505				33033
BIB	3	3				33033
REACTION	(90-TH-232 (1	N, 2N) 90-TH-2	31,,SIG)			33033
DECAY-DATA	(90-TH-231,	25.52HR,DG,8	4.2,0.066)		•	33033
STATUS	(TABLE) Data	taken from	the Table.	l and 2		33033
ENDBIB	3	0				33033
NOCOMMON	0	0				33033
DATA	. 4	1				33033
EN	EN-ERR	DATA E	RR-T			33033
MEV	MEV	MB M	В			33033
9.8	35 0.38	1722.	76.			33033
ENDDATA	3	0				33033
ENDSUBENT	11	0				33033
ENDENTRY	4	0				
ENDTRANS	1	0				
-		-				

2. 233 Pa(2n_{th}, f) cross-section determination using a fission track technique.

Ref: J, EP	·J/A, 47, 100 (2011)	
TRANS	20110807	10000
ENTRY	33036 20110807	33036
SUBENT	33036001 20110807	33036
BIB	12 51	33036
TITLE	²³³ Pa(2nth, f) CROSS-SECTION DETERMINATION USING A	33036
	FISSION TRACK TECHNIQUE	33036
AUTHOR	(H.Naik, P.M. Prajapati, S.V. Suryanarayana, P.N. Pathak,	33036
	D.R.Prabhu,V.Chavan,D.Raj,P.C.Kalsi,A.Goswami)	33036
INSTITUTE	(3INDTRM)	33036
REFERENCE	(J,EPJ/A,47,100,2011)	33036
FACILITY	(REAC, 3INDTRM)	33036
SAMPLE	About 6 g of thorium nitrate salt was wrapped with	33036
	0.025 mm thick aluminum foil and doubly sealed with	33036
	alkathene.5.2 ng of separated 233-Pa in the form of	33036
	nitrate was dried on a 0.025 mm thick aluminum foil.	33036
	Dried 233-Pa(NO3)3 was covered with a 0.0075 mm thick	33036
	Lexan foil of size 1.5 cm x 1.5 cm.	33036
DETECTOR	(HPGE,TRD) The Purity and amount of the 233-Pa was	33036
	ascertained by a gamma-ray spectrometric technique	33036
	using an energy and efficiency calibrated 80 cm3 HPGe	33036
	detector coupled to a PC-based 4K channel	33036
	analyzer. The gamma-ray counting of the irradiated gold	33036
	target (flux monitor) was also done for the 411.8 keV	33036
	gamma-line of 198-Au using same 80 cm3 HPGe detector	33036
	coupled to the PC-based 4K-channel analyzer.The	33036
	counting of fission tracks in lexan foil within a few	33036
	fields i.e. fraction of the total area was done by	33036
	visual inspection under the microscope.	33036
METHOD	(ACTIV, RCHEM, GSPEC) 233-Pa was prepared from	33036
i.	activation of 232-Th followed by beta decay.	33036
	Di-isobutyl carbinol (DIBC), procured from Aldrich,	33036
	USA, was used as an extractant for the radiochemical	33036
	separation of 233-Pa and quantitative stripping was	33036

,	achieved by 0.1 N HCl.	33036
ANALYSIS	(AREA) The amount of 233-Pa was estimated using	33036
	gamma-ray (311.9 keV) spectrometric technique and	33036
,	decay equation. The neutron flux was estimated from	33036
	the peak area of the 411.8 keV of the flux monitor	33036
	198-Au. The fission track in the lexan was counted	33036
	manually using optical microscope. The	33036
	233-Pa(2nth,f)fission cross-section was calculated	33036
	from the fission track using tack density `equation.	33036
ERR-ANALYS	(DATA-ERR) The visual counting of the fission track by	33036
	microscope can cause a systematic error of about 1%.	33036
	The error in 233-Pa(2nth,f) fission cross-section is	33036
	due to replicate measurements, which is about 1.2%.	33036
,	Other systematic errors are due to neutron	33036
	flux (0.5%), irradiation time (0.2%) and visual	33036
·	counting of the fission track under microscope (1%),	33036
	which was mentioned before. Thus, the total systematic	33036
	error is around 1.8%.	33036
HISTORY	(20081111C) Compiled by Dr. H. Naik, Radiochemistry	33036
	Divison of B.A.R.C, Mumbai and Mr. Paresh Prajapati	33036
	of The M.S. University of Baroda, Vadodara	33036
STATUS	(APRVD) Entry approved by Dr. H. Naik	33036
ENDBIB	51 0	33036
COMMON	1 3	33036
EN-DUMMY		33036
EV		33036
0.0253		33036
ENDCOMMON	3 0	33036
ENDSUBENT	58 0	33036
SUBENT	33036002 20110807	33036
BIB	1 1	33036
REACTION	(91-PA-234(N,F),,SIG)	33036
ENDBIB	1 0	33036
NOCOMMON	0 0 .	33036
DATA	3 1	33036

.

EN	DATA	DATA-ERR			33036
EV	В	в			33036
0.0253	4834.	57.		• .	33036
ENDDATA		3	0	`	33036
ENDSUBENT		9	0		33036
ENDENTRY		2	0		
ENDTRANS		1	0		

3. Determination of the 233-Pa (n,f) reaction cross-section from 11.5 to 16.5 MeV

neutron energy by the hybrid surrogate ratio approach.

Ref: J, PR/C	c, 78, 061602 (2008)
TRANS	20090804
ENTRY	33023 20090803
SUBENT	33023001 20090803
BIB	14 63
TITLE	Determination of the 233-Pa (n, f) reaction cross
,	section from 11.5 to 16.5 MeV neutron energy by the
	hybrid surrogate ratio approach
AUTHOR	(B.K.Nayak, A.Saxena, D.C.Biswas, E.T.Mirgule,
	B.V.John, S.Santra, R.P.Vind, R.K.Choudhury,
	S.Ganesan)
INSTITUTE	(3INDTRM)
REFERENCE	(J, PR/C, 78, 061602, 2008)
FACILITY	(VDGT, 3INDTAT)
SAMDT.F	A self-supporting therium target of thickness 2 0

A self-supporting thorium target of thickness 2.0 33023 SAMPLE Mg/cm**2 was bombarded with a 6-Li beam. 33023 DETECTOR (SOLST, SISD) a solid state delta E - E telescope of 33023 thickness 150.0 micro millimeter to 1.0 millimeter was 33023 kept at 90 degree with respect to the beam direction 33023 around the transfer grazing angle to identify the 33023 projectile-like-fragments (PLF). A 16 strip solid 33023 state detector (each strip of size 2.0 X 64.0 mm) was 33023 placed at a back angle covering the laboratory angular 33023 range of 141-158 degree to detect fission fragments in 33023

167

33023

33023

33023 33023 -

33023

33023 33023

33023

33023

33023 33023 33023

coincidence with PLFs. 33023 METHOD (EDE) The proton, deuteron, triton, alpha and 6-Li 33023 particles are uniquely identified by plotting delta 33023 E against the delta E + E. This plot was transformed 33023 to create an effective particle identification versus 33023 energy plot. 33023 INC-SOURCE A self-supporting thorium was bombarded with 6-Li 33023 beam of energy 38.0 MeV from a 14 MV Pelletron 33023 accelerator at Mumbai. 33023 (SURGT) The 234-Pa and 236-U compound systems have ANALYSIS 33023 been populated at overlapping excitation energies in 33023 the same experiment through 232-Th (6-Li,A) 234-Pa and 33023 232-Th (6-Li,D) 236-U transfer channels at E (lab) = 3833023 MeV, and the absolute surrogate method is used to 33023 determine fission decay probabilities of the above 33023 compound nuclei by dividing the number of PLF-fission 33023 coincidences by the associated PLF-singles data. The 33023 experimental values of fission decay probability 33023 ratios of 234-Pa and 236-U compound nuclei at the same 33023 excitation energies have been used to deduce the 233-Pa33023 (n,f) cross-section using a surrogate ratio approach. 33023 ERR-ANALYS (ERR-S) The uncertainties shown in the measured cross 33023 section is due to the statistics of coincidence 33023 counts in each energy beam. 33023 HISTORY (20090803C) Compiled by Mr.Paresh Prajapati of The 33023 M. S. University of Baroda and Dr. S. Ganesan of 33023 Reactor Physics Design Division, B.A.R.C, Mumbai. 33023 COMMENT A new hybrid surrogate ratio approach has been 33023 employed to determine neutron-induced fission cross 33023 sections of 233-Pa in the energy range of 11.5 to 33023 16.5 MeV for the first time. The 233-Pa 33023 (n,f) cross sections are deduced from the measured 33023 fission decay probabilities ratios of 234-Pa and 33023 236-U compound nuclei using the surrogate ratio 33023 method. The 233-Pa (n,f) cross section data from the 33023

	present ex	periment al	ong with th	ne data from	the	33023	
·	literature	e, covering	the neutron	n energy rang	je of 1.0	33023	
	to 16.5 Me	eV have beer	n compared w	with the pred	lictions	33023	
	of statist	cical model	code EMPIRE	E-2.19. While	e the	33023	
	present da	ata are cons	sistent with	the model		33023	
	prediction	ns, there is	s a discrepa	ancy between	the	33023	
	earliear e	experiment of	lata and EMP	PIRE-2.19 pre	edictions	33023	
	in the neu	itron energy	range of 7	7.0 to 10.0 M	4eV.	33023	
STATUS	(APRVD) Ent	ry approved	l by Dr. B.	K. Nayak		33023	
ENDBIB	e	53	0			33023	
NOCOMMON		0	0			33023	
ENDSUBENT	. 6	56	0			33023	
SUBENT	3302300	2009080)3			33023	
BIB		4 1	10			33023	
REACTION 3	L((91-PA-23	33(N,F),,SIG	G)/(92-U-235	5(N,F),,SIG))	₽ ·	33023	
	2(91-PA-233	3(N,F),,SIG)		· ·		33023	
MONITOR	NITOR ((MONIT)92-U-235(N,F),,SIG) ENDF-B/VII						
STATUS	(TABLE) Data has been provided by author in the						
•	tabulated	form				33023	
	(DEP,D6075	5002) 232Th	(6Li,a)234Pa	a/232Th(6Li,	1)236U data	33023	
COMMENT	The excita	ation energy	y was scaled	down to the	3	33023	
	equivalent	neutron er	nergy range	of 11.5-16.	5 MeV by	33023	
	subtractin	ng the neuti	con separati	Lon energy o	E 233-Pa	33023	
	(Sn = 5.45)	5 MeV)				33023	
ENDBIB	1	LO	0			33023	
COMMON		1	3			33023	
EN		,				33023	
MEV						33023	
38.0						33023	
ENDCOMMON		3	0			33023	
DATA	-	6	6	•		33023	
EN	DATA	1ERR-S	1DATA	2ERR-S	2MONIT	33023	
MEV	NO-DIM	NO-DIM	MB	MB	В	33023	
11.4991	0.50184	0.028	0.8832	0.076	1.703	33023	
12.5000	0.51408	0.027	0.8754	0.076	1.799	33023	
				,			

169

.

.

13.5080	0.49964	0.021	0.8986	0.066	1.988	33023
14.5120	0.49964	0.021	0.9444	0.071	2.091	33023
15.5163	0.52743	0.026	1.1347	0.077	2.151	33023
16.5710	0.68700	0.049	1.4780	0.1	2.122	33023
ENDDATA		8	0			33023
ENDSUBENT		27	0			33023
ENDENTRY		2	0		. · · ·	I
ENDTRANS		1	0			

7.6 Summary and Conclusions

In brief, an EXFOR is the library and format for the collection, storage and retrieval of experimental nuclear reaction data. The library is the product of a worldwide co-operation, namely the international Network of Nuclear Reaction Data Centers (NRDC) which is co-ordinated by IAEA Nuclear Data Section (NDS). The basic unit of EXFOR is an 'entry', which corresponds to one experiment which is usually described in one or more bibliographic references (journal articles, laboratory reports, conference proceedings etc.). All types of microscopic cross-sections and related data (e.g. Integral and partial cross-sections, excitation functions, spectrum averaged data, ratios, differential cross-sections, resonance parameters, fission product yields, reaction rate and resonance integrals etc.) have been included in Exfor database. The NDPCI has considered the classical nuclear data physics activity of EXFOR compilation into IAEA-EXFOR database as an important and major activity. The author has contributed more than 30 new Indian Exfor entries in IAEA-EXFOR database since 2006 as required by NDS, IAEA. The IAEA-EXFOR nuclear data compilation of the Indian experimental nuclear physics data will be continued in future as an important task of NDPCI.

References

- O. Schwerer, "International Nuclear Data Committee (INDC)," Report on the IAEA Technical Meeting on Network of Nuclear Reaction Data Centres, 25-28 September 2006, IAEA Headquarters, Vienna, Austria
- [2]. V. McLane, EXFOR Basics: A Short Guide to the Nuclear Reaction Data Exchange Format, Brookhaven National Laboratory report BNL-NDC-63380, Rev. 2000 (May 2000)
- [3]. S. Ganesan, "A brief status report on selected Indian nuclear data physics activities submitted to the NRDC Meeting-2009," IAEA Technical Committee Meeting of International Network of Nuclear Reaction Data Centres, 25-26 May 2009, IAEA Headquarters, Vienna, Austria
- [4]. IAEA-EXFOR database: http://www-nds.iaea/exfor
- [5]. S. Ganesan, "A Status report on EXFOR compilation activities in India and on formation of Nuclear Data Physics Centre of India (NDPCI)," IAEA Technical Committee Meeting of International Network of Nuclear Reaction Data Centres, 20-23 April, 2010, Sapporo, JAPAN
- [6]. S. Ganesan et al., "A regional IAEA-NDS nuclear data mirror site in India for the Asian region," is available in the distributed hardcopy April 2006 issue of BARC Newsletter. A soft copy is also available at: http:// www.barc.ernet.in/publications/nl/2006/200604-2.pdf
- [7]. P. M. Prajapati et al, "Exfor entry for the data of fission products cumulative yields in thermal neutron fission of ^{229Th}," Proceeding Golden Jubilee National workshop on Nuclear Data for Advanced Nuclear Systems, Mangalore University, India,2006
- [8]. S. Ganesan, "Selected Indian nuclear data physics activities: A status report presented at the NRDC Meeting-2008; IAEA Technical Committee Meeting of International Network of

Nuclear Reaction Data Centres from 22 to 25 September 2008 at the Institute of Physics and Power Engineering in Obninsk, Russian Federation

- [9]. P. M. Prajapati, "Experience in IAEA-EXFOR compilations of nuclear data physics experiments in India," Presented in National workshop on Neutron Generator and Application, Department of Physics, Banaras Hindu University, Varanasi – 221005, September 19-20, 2009
- [10].P. M. Prajapati, "Interesting experience in creating database entries to the IAEA-EXFOR database system in India, Presented in Specialists Meeting on Advances in Scientific Database in India (SMASD-09), Indira Gandhi centre for Atomic Research (IGCAR), Kalpakkam, August 10-11, 2009,
- [11].P. M. Prajapati, "Measurement of neutron induced reaction cross-section of structural materials and compilation of Indian experimental nuclear data in IAEA-EXFOR database," Presented in AASPP Workshop, the 1st Asian nuclear reaction database development workshop, 25-29 October, 2010, Hokkaido University, Sapporo, Japan.
- [12]. O. Schwerer, "Proceeding of DAE-BRNS Theme meeting on EXFOR compilations of Nuclear data," Training School Hostel, Mumbai – 400 094, India, September 4-8, 2006,