CONTENTS

CHAPTER	TITLE	PAGE
I	INTRODUCTION	
I.1	Catalysts and catalytic processes	1
1.2	Types of catalysis/catalysts	1
1.3	Supported metal catalysts	3
1.3.1	Features of supported metal catalysts	4
I.4	Design of catalysts	5
I.4.1	Active species	6
1.4.2	Choice of promoters/poisons	8
1.4.3	Nature of support	8
I - 4 - 4	Method of incorporation of active species	10
1.	Equilibrium adsorption/ion exchange/wet impregnate	tion
2.	Pore filling/dry impregnation/incipient wetness n	nethod
3.	Co-precipitation	
4.	Deposition precipitation	
I.4.5	Pretreatments	15
1.5	Development of catalysts: from art to science	15
1.6	Aim and scope of the work	19
11	EXPERIMENTAL METHODOLOGY	
11.1	Purity and purification of reagents	23
11.2	Preparation of spheroidal alumina:	
	sol-gel/oil drop method	23
11.2.1	Designation of alumina samples	25
11.3	Preparation of catalysts	26
11.3.1	Designation of catalyst samples	27

11.4	Characterisation of catalysts and supports	28
11.4.1	Chemical analysis	28
11.4.2	Determination of physical properties	29
11.4.3	Textural properties	29
II.4.4	Infrared spectroscopic studies	30
11.4.5	Thermal analysis	30
II.4.6	Electron microscopy	31
11.4.7	Dispersion measurements	31
11.4.8	Ammonia chemisorption and TPD	32 .
11.4.9	Temperature programmed reduction	33
11.4.10	Temperature programmed oxidation	33
II.4.11	Diffuse reflectance spectroscopy	34
11.4.12	Electron spectroscopy for chemical analysis	34
11.5	Activity evaluation	35
11.5.1	Dehydrogenation of n-dodecane	35
11.6	Kinetics of n-dodecane dehydrogenation	
	on Pt-Sn-Li/Al ₂ O ₃ catalyst	36
II.6.1	Type of reactor and reactor aspect ratios	36
11.6.2	Mass transfer studies	37
11.6.3	Data collection for the determination of kinetics	37
1.	Effect of space velocity on conversion	38
2.	Effect of partial pressures on conversion	38
11.6.4	Data analysis	38
III	STUDIES ON SPHEROIDAL GAMMA ALUMINA	
111.1	Introduction	41
	Choice of alumina as a support	41
	Preparation of alumina	43

1.	Aluminium hydroxides and oxyhydroxides	44
2.	Transition aluminas	48
111.3	Methods of modification of pore structure of alumina	52
1.	By controlling particle/agglomerate size and shape	53
2.	By using additives	54
111.4	Aim and scope of the work	55
111.5	Characterisation of alumina sol	57
6.111	Characterisation of alumina precursors	59
III.6.1	X-ray powder diffraction	59
111.6.2	Infrared spectroscopic studies	60
111.6.3	Thermal analysis	60
111.7	Characterisation of transition aluminas	62
111.7.1	Average sphere size	62
111.7.2	Apparent bulk density	63
111.7.3	Crushing strength	63
111.7.4	X-ray diffraction studies	63
111.7.5	Morphology of alumina samples	65
111.7.6	Textural properties	66
111.7.7	Surface acidity measurements	69
8.111	Conclusions	71
IV	STUDIES ON PROMOTED PLATINUM ON ALUMINA CATALYSTS	
IV.1	Introduction ,	72
IV.1.1	Methods of preparation of Pt/alumina catalysts	75
IV.1.2	Pretreatments	76
IV.1.3	Use of promoters	78
IV.2	Aim and scope of the investigation	82
IV.3	Characterisation of lithium modified gamma alumina	84

IV.4	Characterisation of precursors and catalysts	85
IV.4.1	Chemical analysis	86
IV.4.2	Dispersion measurements	88
IV.4.3	Temperature programmed reduction studies	91
IV.4.4	Diffuse reflectance spectroscopic studies	96
IV.4.5	Electron spectroscopy for chemical analysis (ESCA)	101
IV.5	Activity evaluation	104
IV.5.1	Activity evaluation at atmospheric pressure	
	conditions	104
IV.5.2	High pressure reaction studies	106
IV.5.3	Studies on the selectivity of the catalysts	
	for different products	108
IV.5.4	Temperature programmed oxidation studies	112
1V.6	Promoted platinum on alumina catalysts:	
	correlations between properties and performance	115
V	STUDIES ON THE KINETICS OF DEHYDROGENATION OF	
	n-DODECANE ON Pt-Sn-Li/Al203	
V.1	Introduction	119
V.2	Aim and scope of the work	120
V.3	Studies on mass transfer effects	121
V.4	Kinetics of n-dodecane dehydrogenation	
	on Pt-Sn-Li/Al ₂ O ₃	124
V.4.1	Data analysis	125
V.4.2	Model development	126
V.4.3	Criteria for model acceptance	126
V.4.4	Parameter estimation	126
V.4.5	Power law model	128

.

V.4.6	Adsorption type models (Langmuir-Hinshelwood ty	pe)	129
	List of symbols and abbreviations used		

APPENDICES

I	Model derivation of Langmuir-Hinshelwood type models	134
II	Listing of the computer programs for parameter	
	estimation using Simplex method and polynomial	
	regression	137
111	Relationship between parameters and terms	
	appearing in integral equations	150
IV	Stoichiometry of n-dodecane dehydrogenation	151
	REFERENCES	
	SUMMARY	