C H A P T E R III

RESULTS AND DISCUSSION

RESULTS AND DISCUSSION

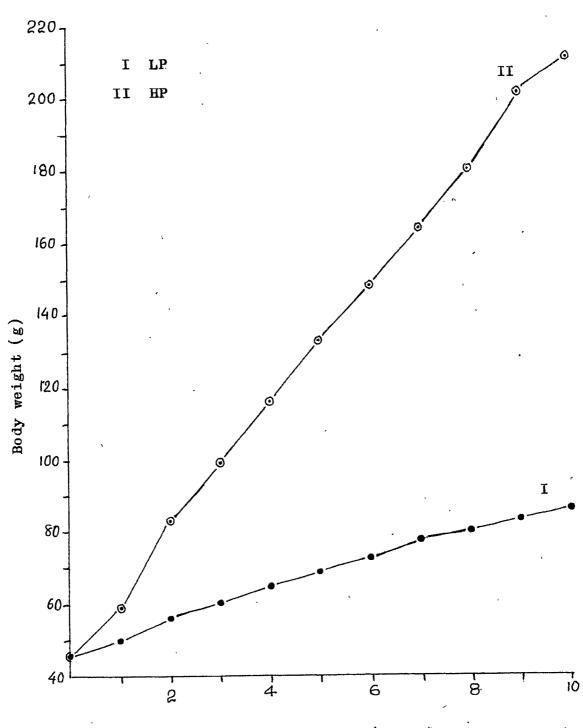
As stated earlier the present investigations were aimed at a study of the distribution of selected metabolites and enzymes in different regions of the rat brain and changes in the same with protein deficiency during the post-weaning period. The regions studied were cerebellum, medulla, pons, midbrain, olfactory lobes, visual cortex, basal ganglia, hypothalamus, corpus callosum and residual brain. The parameters measured were:

- I. weight and moisture content
- II. protein content
- III. activities of the enzymes namely, glutamate dehydrogenase, glutamate decarboxylase, alanine aminotransferase, aspartate aminotransferase, glutamyl transferase and glutamine synthetase.
 - IV. oxygen consumption with glucose and glutamate as substrates
 - V. glutathione and ascorbic acid.

In addition, data were obtained on body weight and hemoglobin content of blood.

Section A

BODY WEIGHT, BLOOD HEMOGLOBIN AND BRAIN WEIGHT


The weight changes of the LP and HP groups are shown graphically in Fig.1. The data on weight gain, hemoglobin and brain weights of rats fed LP and HP diets are given in Table 11.

As expected protein deficiency had a marked effect on growth. After 10 weeks of treatment body weights of the LP group were only 41% of those of the HP group. This was associated with reduction in brain weight (11%). Similar reductions in body weight and brain weight have been found both with protein deficiency and undernutrition as can be seen from Table 12.

A low hemoglobin content of the LP animals obtained in the present studies is consistent with other reports (e.g., Rajalakshmi, Malathy and Ramakrishnan, 1967).

WET WEIGHT AND MOISTURE CONTENT

The wet weight and moisture content of different regions of the brain in LP and HP animals are given in Tables 13 and 14. There was about a 10% decrease in the

Period of treatment (weeks)

Fig.1. Growth rate of rats fed LP and HP diets.

	LP	HP	LP as % of HP
body weight (g)		-	
initial	46+1.6(20)	46+2.2 (20)	100
final	86+2.1 ($\overline{20}$)	211+16.9 (20)	41
gain in weight (g)	40	165	24
blood hemoglobin (g per 100 ml)			
ini tial	12.2+0.35 (12)	12.1+0.40 (8)	101
final	13.4+0.22 (8)	14.6+0.36 (8)	92
brain weight (g)	1.54+0.4	1.73+0.02 (8)	89

Table 11: Data on weight gain and body composition of rats fed LP and HP diets

· · · · ·

·

1

.

The number of rats are shown in parenthesis.

.

ι

.

1

reference	treatment		s per cent ontrol
		body weight	brain weight
	protein deficiency	41	89
Rajalakshmi et al.(1967)		41	87
Winick and Noble (1966)	under- nourished	52	81
Dobbing (1968)	11	20	82
Rajalakshmi and Ramakrishnan (1969)	17	67	91

Table 12: Body weight and brain weights of rats fed a low protein diet dond undernourished after weaning

1

,

region	fresh_v	veight (mg)	LP as
	LP	· HP	% of HP
cerebellum	186 <u>+</u> 5.02 (169–199)	204 <u>4</u> 4.77 (197–223)	91
medulla	74 <u>+</u> 1.23 (70-77)	83+3.65 (76-97)	89
pons	82 <u>+</u> 1.30 (80-87)	91 <u>+</u> 2.33 (87-97)	90 ·
midbrain	101 <u>+</u> 2.43 (94-108)	113 <u>+</u> 3.31 (101–120)	89
olfactory lobes	62 <u>+1</u> .05 (60-65)	77 <u>+</u> 3.86 (65-88)	81
visual cortex	89 <u>+</u> 4.26 (77–98)	107 ± 4.75 (97-120)	83
hippocampus	108 <u>+</u> 2.88 (98–113)	120 <u>+</u> 3.36 (108–124)	90
basal ganglia	85 <u>+</u> 2.78 (77-90)	115 <u>+</u> 3.45 (105–125)	74
hypothalamus	22 <u>+</u> 0.50 (20-23)	24+0.67 (22-26)	92
corpus callosum	30 <u>+</u> 1.28 (27-33)	33 ± 1.05 (30-35)	91
residual brain	626 <u>+</u> 8.60 (605-650)	699 <u>+</u> 16.1 (669-758)	90
whole brain weight	(g) 1.54	1.73	89
" " " " as calculated from above data	n the 1.46	1.67	88

Table 13: Weight of different regions of the brain in rats fed LP and HP diets

,

.

Five animals were used in each group.

.

region	<u>moisture_content</u> LP	(g_per_100g) HP	LP as % of HP
cerebellum	78. 0+ 0.1 (77.7-78.2)	77.8 <u>+</u> 0.1 (77.5-78.0)	100
medulla	73.3 <u>+</u> 0.2 (73.0-73.6)	72.7 <u>+</u> 0.2 (72.4-73.1)	101
pons	73.7 <u>+</u> 0.5 (73.2-74.6)	72.8 ± 0.3 (72.4-73.4)	101
midbrain	76.9 <u>+</u> 0.2 (76.7–77.3)	75.8 <u>+</u> 0.1 (75.6-76.0)	101
olfactory lobes	81.6 <u>+</u> 0.2 (81.3-82.0)	81.0 <u>+</u> 0.2 (80.7-81.3)	101
visual cortex	80.3 <u>+</u> 0.1 (80.2-80.5)	79.5 <u>+</u> 0.3 (79.1-80.1)	101
hippocampus	79.9 <u>+</u> 0.1 (79.8-80.1)	78.7 <u>+</u> 0.2 (78.4-79.1)	102
basal ganglia	78.1 <u>+</u> 0.7 (76.8-79.3)	77.0 <u>+</u> 0.4 (76.4-77.7)	101
hypothal amus	81.1 <u>+</u> 0.1 (81.0-81.2)	78.5 <u>+</u> 0.3 (77.9-79.1)	103
corpus callosum	75.5 <u>+</u> 0.7 (74.7-76.8)	74.2 <u>+</u> 0.6 (73.3-75.2)	102
residual brain	79.0 <u>+</u> 0.4 (78.3-79.6)	78.3 <u>+</u> 0.1 (77.9-78.8)	101

к <u>г</u>

•

,

Table 14: Moisture content of different regions of the brain in rats fed LP and HP diets

.

Three animals were used in each group.

weight of the whole brain as well as different regions with protein deficiency. The basal ganglia, olfactory lobes and visual cortex however showed a greater reduction in weight.

The percentage weight of different regions compares with that in other studies (Table 15). However, the weight of the hypothalamus was less in these studies possibly because of differences in the extent of excision. Similarly the percentage weight of the visual cortex was slightly more.

Moisture content is slightly but consistently increased in all the regions in the LP animals. A similar increase in moisture content with protein deficiency has been found in rats by Prof. Nagchaudhury (personal discussion) and in pigs by Dickerson, Dobbing and McCance (1967). The difference in moisture content was evident at the time of dissection when it was found relatively more difficult to achieve a clear separation of the regions in the LP animals.

PROTEIN

The data on the protein of different regions are given in Table 16. The same varied from 10.0-12.5% in the HP group and from 8.0-11.5% in the LP group. In general the values for protein content were less in the LP animals but the differences were statistically significant only

·	present	study	Bennett et al.	Rajalakshmi and Patel
region	LP	HP	(1968)	(1968)
cerebellum	12.7	12.2	14.3	13.6
brain stem	10.6	10.4	12.4	11.6
olfactory lobes	4.2	4.6	3.2	4.0
visual cortex	6.1	6.4	3.4	5.0
hippocampus	7.4	7.2	-	6.2
basal ganglia	5.8	6.9	7.8*	4.9
hypothalamus	1.5	1.4	2.3	2.7
remaining brain	51.7	50.7	-	52.5

Table 15: Comparative data on the percentage weight of different regions in the rat brain

*The corresponding region studied was caudate + putamen.

region	no. determi-	of [@] animals	prot (g_per_	LP as %	
	nations		LP	HP	of HP
cerebellum	5	10	10.1 ± 0.43 (9.2-11.7)	11.7 ± 3.1 (10.8-12.5)	86*
medulla	3	12	7.7 <u>+</u> 0.30 (7.1–8.0)	10.0 <u>+</u> 0.23 (9.6-10.4)	77**
pons	3	12	8.0 <u>+</u> 0.88 (6.3-9.2)	10.7 ± 0.38 (10.0-11.3)	75*
mi dbrain	3	12	10.0 <u>+</u> 0.23 (9.6–10.4)	11.0+0.62 (10.0-12.1)	91
olfactory lobes	s 2	8	11.4+1.05 (10.4,12.5)	12.3 ± 0.20 (12.1,12.5)	93
visual cortex	3	12	10.0 <u>+</u> 0.40 (9.2–10.4)	11.5 ± 0.56 (10.8-12.5)	87
hippocampus	2	8	9.8 <u>+</u> 0.20 (9.6,10.0)	10.4 <u>+</u> 0.85 (9.6,11.3)	94
basal ganglia	2	8	10.6 ± 0.20 (10.4,10.8)	9.8 <u>+</u> 0.2 (9.6,10.0)	108
hypothalamus	1	8	10.4	12.5	83
corpus callosu	n 1	8	8.6	11.7	74
residual brain	5	5	10.8 ± 0.36 (10.0-11.7)	12.6 ± 0.58 (11.3-14.2)	86*

Table 16: Concentration of protein in different regions of the brain in rats fed LP and HP diets

.

*Difference significant at 5% level.

**Difference significant at 1% level.

[@]In this and other tables this was the same for both groups except where specified otherwise.

₽

in the case of the cerebellum, pons and residual brain. No decrease was found in the basal ganglia but the same showed a marked decrease in weight with deficiency so that the total amount of protein in this region would be less.

When the values were calculated on whole brain basis they were 10.2% in the case of the LP group and 11.7% in the case of the HP group so that the overall LP value was 87% of HP value. The values for the HP animals are in the range reported for 3 month old animals by other investigators (e.g., Maletta and Timiras, 1968). In both groups relatively high concentrations of protein were found in residual brain, hypothalamus and olfactory lobes whereas low concentrations were found in the medulla, pons and hippocampus. The basal ganglia and the corpus callosum showed respectively high and low values in the LP group, and the reverse, in the HP group.

The present data are compared in Table 17 with those reported for the rabbit brain (McCaman and Aprison, 1964), cat brain (Berl, 1966) and rat brain (Maletta and Timiras, 1968). In all the studies the medulla was found to have a lower concentration of protein than the visual cortex.

Table 17:	Comparative data on	the protein content of	1
	brain regions	e.	

1

	protein (g per 100 g)					
region		at <u>t_study</u>)	rat (Maletta	rabbit	cat (Berl, 1966)	
	LP	· HP	ras,1968)			
cerebellum	10.1	11.7	13.1	-	-	
visualcortex -	10.0	11.5	11.9	9.8*	9.3	
hypothal amus	10.4	12.5	12.4		8.5	
medulla	7.7	10.0	<u></u> '	8.7	8.1	
midbrain	10.0	11.0	-	10.2*	8.2	
basal ganglia	10.6	9.8	-	9.8*	9.5*	
pons	8.0	10.7	-	-	8.2	
hippocampus	9.8	10.4	_	-	9.6	

*The corresponding regions studied were superior colliculus, cortex and caudate nuleus for midbrain, visual cortex and basal ganglia respectively. This was also true of pons in rat and cat brains. In the case of rat and rabbit brains the midbrain also had a higher concentration but this was not true of the cat brain. Similarly, relatively high values were obtained in the rat for the hypothalamus and cerebellum. More extensive data are needed to confirm these differences as genuine species differences.

Section B

ENZYME STUDIES

GLUTAMATE DEHYDROGENASE (GDH)

The data on GDH are presented in Table 18. In both the groups the values were found to be high in the case of medulla, pons and midbrain and low in the case of the corpus callosum, hippocampus and cerebellum. To the latter list must be added the basal ganglia in the case of the HP group and olfactory lobes in that of the LP group. The values for different regions in the two groups were found to correlate highly with each other (r=0.922, P < 0.01).

The regions most affected by protein deficiency were the corpus callosum, cerebellum, olfactory lobes, midbrain and the residual brain containing the thalamus. The pons, basal ganglia and visual cortex were not affected by deficiencies. The remaining regions showed some decrease, but this was not statistically significant.

		no. of letermi- animals ations		glutamate d <u>(enzyme un</u> L P	LP as % of HP	
cerebellum	LP HP	8 9	16 18	1.6 ± 0.12 (1.2-2.1)	2.0 <u>+</u> 0.09 (1.8-2.6)	80*
medulla		5	20	2.8 ± 0.19 (2.4-3.5)	3.4 ± 0.19 (3.0-4.1)	82
pons	LP HP	4 5	16 20	2.8 ± 0.18 (2.3-3.2)	2.9-0.11 (2.7-3.2)	97
midbrain		5	20	2.5 ± 0.12 (2.2-2.9)	3.1 <u>+</u> 0.11 (2.7–3.3)	81**
olfactory le	obes	4	16	1.7 ± 0.10 (1.4-1.8)	2.3+0.09 (2.1-2.4)	74**
visual corte	ex	5	20	2.0+0.11 (1.8-2.4)	2.2 <u>+</u> 0.14 (1.8–2.5)	91
hippocampus		4	16	1.5 ± 0.16 (1.1-1.8)	1.9 <u>+</u> 0.25 (1.4–2.3)	79
basal gangl	ia	4	16	1.9 ± 0.17 (1.4-2.2)	2.0+0.11 (1.8-2.3)	95
hypothal amu	S	2	16	2.1 ± 0.04 (1.7,2.5)	2.4 ± 0.16 (2.2,2.5)	88
corpus call	osum	2	16	1.3 <u>+</u> 0.02 (1.1,1.5)	1.9+0.00 (1.9,1.9)	68**
residual br	ain	9	9	2.0 <u>+</u> 0.07 (1.7-2.3)	2.3 ± 0.05 (2.2-2.6)	87**

Table 18: Distribution of glutamate dehydrogenase in different regions of the brain in rats fed LP and HP diets

,

.

.

*Difference significant at the 5% level. **Difference significant at the 1% level.

, ,

,

١

,

,

GLUTAMATE DECARBOXYLASE (GAD)

The data on GAD are presented in Table 19. The highest concentration of the enzyme was found in the hypothalamus and midbrain and the lowest concentrations in the corpus callosum and pons. The low value for the corpus callosum is not surprising as it is composed of almost entirely white matter and the activities of GAD and other enzymes are less in white matter than in grey matter (e.g., Albers, 1960). The pattern of enzyme activity in different regions was found to compare generally with that in the monkey brain reported by Albers and Brady (1959) as can be seen from Table 20.

The values for the different regions in the two groups were found to be significantly correlated (r=0.825, P < 0.01).

All the regions except the olfactory lobes and hippocampus were affected by deficiency (Table 19). The LP values for the hypothalamus and basal ganglia were only about half the HP values with no overlap between the values for the two groups. The values for the medulla, visual cortex and the residual brain containing the thalamus are also markedly affected by the LP diet. However, the difference in the case of the hypothalamus was not statistically significant because of the small number of observations.

region	no.	of		glutamate decarboxylase (enzyme units per g)		
	determi- nations	animals	LP	HP	% of HP	
cerebellum	10	20	16+1.0 (11-20)	22 <u>+</u> 1.1 (18-30)	73**	
medulla	4	16	13 <u>+</u> 0.9 (11-15)	22 <u>+</u> 2.4 (17-28)	59**	
pons	5	20	12+1.5 (10-15)	16 <u>+</u> 1.4 (13–20)	75	
midbrain	4	16	31 <u>+</u> 2.8 (24-36)	41 <u>+</u> 2.4 (35-46)	7 6*	
olfactory lo	bes 4	16	25 <u>+</u> 3.1 (18-31)	25 <u>+</u> 3.6 (20-36)	100	
visual corte	EX LP 5 HP 4	20 16	19 <u>+</u> 2.0 (14-23)	30 <u>+</u> 3.0 (23-36)	63*	
hippocampus	4	16	17 <u>+</u> 3.4 (14-28)	20 <u>+</u> 1,9 (15-24)	85	
basal gangli	a LP 3 HP 4	12 16	16+2.9 (11-21)	30 <u>+</u> 3.4 (23-36)	53*	
hypothal amus	2	16	27 <u>+</u> 5.5 (21,32)	53 <u>+</u> 3.2 (43,63)	51	
corpus callo	sum 1	8	5	8	63	
residual bra	in 10	10	21 <u>+</u> 1.4 (16-28)	32+2.3 (22-49)	66**	

.

Table 19: Distribution of glutamate decarboxylase in different regions of the brain in rats fed LP and HP diets

•

.

. .

.

*Difference significant at 5% level. **Difference significant at 1% level.

	glutamate decarboxylase (per cent of midbrain value)				
region	present LP	study HP	monkey (Albers and Brady,1959)		
midbrain	100	100	100		
hypothal amus	. 96	114 ·	96		
residual brain (thalamus)	71	68	85		
visual cortex	70	70	84		
cerebellum	58	50	79		
pons + medulla	56	49	34		

Table 20: Comparison of the distribution of glutamate decarboxylase in rat and monkey brains

,

.

-

ALANINE AMINOTRANSFERASE (GPT)

Date on the activity of GPT in different regions are shown in Table 21. In both groups the visual cortex, midbrain, olfactory lobes and cerebellum had relatively high values, whereas the hypothalamus and corpus callosum had relatively low values. The values for the two groups were found to be positively correlated (r=0.695, P < 0.05).

The LP values ranged from 11 to 33 whereas the HP values showed a greater variation from 13-50. The former were consistently less than the latter in all regions. The differences were statistically significant in the case of the cerebellum, medulla, pons, olfactory lobes, visual cortex and residual brain and were most marked in the medulla and pons. The results are in accord with previous studies carried out in this laboratory in which the enzyme in the whole brain is found to be affected in protein deficiency.

ASPARTATE AMINOTRANSFERASE (GOT)

The data on GOT are shown in Table 22. The values for the HP group varied for 113-153 whereas the corresponding range for the HP group was 89-122. In both groups the basal ganglia had relatively high values whereas the medulla had a low value. The values for the two groups were found to be positively correlated (r=0.805, P < 0.01).

region	no. of			inotransferase units per g)	LP as % of	
		ermi- ions	animals	LP	HP	HP
cerebellum	LP HP	10 4	20	28 ±1.1 (20-31)	44 <u>+</u> 3.0 (38-52)	64**
me dulla		4	16	15 <u>+</u> 1.9 (10-19)	36 <u>+</u> 4.1 (28–43)	42**
pons		5	20	18 <u>+</u> 1.4 (15-19)	32 <u>+</u> 2.6 (26-40)	56**
midbrain		4	16	32 <u>+</u> 3.2 (27–41)	36 <u>+</u> 3.8 (30-47)	89
olfactory lobes	LP HP	2 4	8 16	31 <u>+</u> 0.7 (30,31)	36 <u>+</u> 0 •9 (34-38)	86*
visual cortex		5	20	33 <u>+</u> 2.6 (23-38)	50 ± 4.8 (41-67)	66*
hippocampus		4	16	28 <u>+</u> 1•0 (25-29)	25 ± 2.3 (21-31)	112
basal ganglia	LP HP	3 4	12 16	22 <u>+</u> 2.6 (17-26)	28 ± 1.3 (25-31)	79
hypothal amus		2	16	17 <u>+</u> 4.5 (12,21)	16+4.0 (12,20)	106
corpus callosum		1	8	11	13	85
residual brain		10	10	26 <u>+</u> 1.2 (18-29)	33 <u>+</u> 1.9 (28-40)	79**

Table 21: Distribution of alanine aminotransferase in different regions of the brain in rats fed LP and HP diets

.

*Difference significant at 5% level. **Difference significant at 1% level.

• • •

,

region		• of	A	aminotransferase units per g)	LP as % of
10g10h	determ: nations	i- animals s	LP	HP	H P
cerebellum	6	12	106 <u>+</u> 2•1 (97-111)	142+2.0 (136-147)	75**
medulla	2	8	89 <u>+</u> 3.0 (89,92)	130 <u>+</u> 2.6 (128,133)	68**
pons	3	12	98 <u>+</u> 4.9 (88-103)	136 <u>+</u> 9.0 (122-153)	7 2*
midbrain .	2	8	91+2.0 (89,93)	133 <u>+</u> 2.6 (131,136)	68**
olfactory lobes	2	8	106 <u>+</u> 1.6 (105,108)	136 <u>+</u> 0.0 (136,136)	78**
visual cortex	3	12	104 <u>+</u> 5.4 (98-111)	. 138 <u>+</u> 7.2 (125–150)	75*
hippocampus	2	8	108 <u>+</u> 3.0 (105,111)	143 ± 5.0 (138,148)	76*
basal ganglia	LP 1 HP 2	4 8	122	147 <u>+</u> 3.0 (144,150)	83
hypothalamus	. 1	8	109	149	73
residual brain	6	6	110 <u>+</u> 3.0 (103-122)	153 <u>+</u> 6.8 (131–167)	72**

,

Table 22: Distribution of aspartate aminotransferase in diffe-rent regions of the brain in rats fed LP and HP diets

*Difference significant at 5% level. **Difference significant at 1% level.

. . -

,

All the regions were affected by protein deficiency. although the values for basal ganglia and hypothalamus must be treated with reservations as they were based on only one determination. However a number of animals were used for each determination.

The LP values varied for 68% to about 83% of the HP values. This variation was much less than that in the case of other enzymes suggesting that protein deficiency has a more uniform effect on the activity of this enzyme in all the regions studied. The data confirm previous observations of the effects of protein deficiency on this enzyme.

GLUTAMYL TRANSFERASE

The data on glutamyl transferase are presented in Table 23. The lowest values were found in the corpus callosum, hypothalamus and basal ganglia whereas the highest concentration was found in olfactory lobes. The visual cortex, cerebellum, pons and midbrain also had relatively higher concentrations. The values for the two groups were found to be significantly correlated (r=0.980, P < 0.01).

Table 23: Distribution of glutamyl transferase in differentregions of the brain in rats fed LP and HP diets

.

.

- 1

.

	no	. of	glutamyl tra (enzyme unit		LP as % of
region		- animals	LP	HP	HP
cerebellum	6	12	752 <u>+</u> 21.6 (682-819)	747 ± 21.1 (676-830)	101
medulla	4	16	642 <u>+</u> 18.4 (594-682)	687 <u>+</u> 9.3 (665-709)	93
pons	4	16	658 <u>+</u> 9.9 (632–687)	727 <u>+</u> 15.2 (693–764)	91**
midbrain	4	16	697 <u>+</u> 11.7 (682-731)	713 <u>+</u> 6.0 (698-726)	98
olfactory lobes	4	16	880 <u>+</u> 13.1 (852-907)	838 <u>+</u> 28.3 (759-880)	106
visual cortex	4	16	698 <u>+</u> 14.2 (665-731)	752 <u>+</u> 14.8 (715-781)	9 3 *
hippocampus	4	16	524 <u>+</u> 9.5 (500-539)	551 <u>+</u> 14.4 (511-599)	95
basal ganglia	4	16	407 <u>+</u> 21.0 (363-462)	491 <u>+</u> 15.1 (451 <u>+</u> 517)	83*
hypothalamus	LP 1 HP 2	8 16	4 0 7	473 <u>+</u> 5.5 (467,478)	84
corpus callosum	2	16	394 <u>+</u> 26.0 (368,420)	421 <u>+</u> 25.0 (369,446)	94
residual brain	6	6	561 <u>+</u> 11.6 (533-599)	602 <u>+</u> 8.5 (567-627)	93*

*Difference significant at 5% level. **Difference significant at 1% level.

.

N

,

.

The regions affected by protein deficiency were pons, visual cortex, basal ganglia and residual brain. A difference was also found in the case of the hypothalamus but this was not statistically significant presumably because of the small number of observations.

The pattern of distribution was found to resemble that found in the cat in some respects (Table 24). In both cases the corpus callosum was found to have a relatively low value whereas the midbrain and the visual cortex had relatively higher values. However, the basal ganglia and hypothalamus which had low values in the present studies had relatively high values in the cat brain. Further studies are needed to verify these observations.

GLUTAMINE SYNTHETASE

Data on the distribution of glutamine synthetase are presented in Table 25.

In both cases, the values for the corpus callosum and the basal ganglia were low whereas those for the cerebellum, olfactory lobes and visual cortex were high. The values for the two groups were found to be positively correlated (r=0.892, P < 0.01). The values for the LP group (8-19) tended to be somewhat less than those for

Table 24: Comparison of the regional distribution of glutamyl transferase in the rat and the cat brains

-

ł.

,

region	values as per cen rat	cat
	(present study)	(Ber1,1966)
medulla	100	100
cerebellum	109	121*
pons	106	104
midbrain	104	105*
visual cortex	109	221
hippocampus	80	121
basal ganglia	71	152*
hypothalamus	69	121
corpus callosum	61	84

*The corresponding regions studied for cerebellum, midbrain and basal ganglia were cerebellar hemispheres, midbrain tegmentum and caudate nucleus respectively.

.

region	<u>no</u> .			synthetase its_per_g)	LP as % of
	determi- nations	animals	LP	HP	HP
cerebellum	6	12	14 <u>+</u> 0.86 (11-16)	15 <u>+</u> 0.73 (13-18)	93
medulla	4	16	9 ± 0.50 (8-10)	11 <u>+</u> 0.41 (10 - 12)	82 *
pons	4	16	11 <u>+</u> 0.41 (10-12)	12 <u>+</u> 0.41 (11-13)	92
midbrain	4	16	12 <u>+</u> 0.91 (10-13)	12 ± 0.71 (10-13)	100
olfactory lobes	4	16	16 <u>+</u> 0.96 (13-17)	19 <u>+</u> 1.5 (16-23)	84
visual cortex	4	16	13 <u>+</u> 0.65 (11-14)	15 <u>+</u> 1.10 (12-17)	87
hippocampus	<u>4</u> .	16	9 <u>+</u> 1.10 (6-11)	10 <u>+</u> 0.91 (8-11)	90
basal ganglia	4	16	5 ± 0.41 (4-6)	9 <u>+</u> 1.40 (7-13)	56*
hypothalamus	2	16	11+1.6(9,12)	10 <u>+</u> 0.00 (10,10)	110
corpus callosum	2	16	$(\frac{8+1.0}{7,9})$	9+0.71 (8,9)	89
residual brain	6	6	11 <u>+</u> 0.76 (8-12)	12 <u>+</u> 0.77 (10-13)	92

Table 25: Distribution of glutamine synthetase in different regions of the brain in rats fed LP and HP diets

*Difference significant at 5% level.

the HP group (9-19) but the differences were significant only in the case of basal ganglia and medulla. In previous studies also (Rajalakshmi <u>et al.</u>, 1965) glutamine synthetase was found to be less affected than other enzymes.

The values in the present studies were found to be very much lower than those generally reported. This might be because, in the present studies, the blank consisted of the complete system without substrate whereas in other studies ATP was omitted from the system. This difference in assay system was noticed only at the time of writing up the thesis. The endogenous production of substrate might account for the low values obtained in the present studies.

The higher activity found in the cerebellum as compared to most regions is consistent with the difference between cerebellar and cerebral activity reported in rats (Wu, 1963) as can be seen from the following comparisons:

	glutamine (enzyme_un	synthetase its/g_tissue)
	present study	Wu (1963)
cerebrum	12	66
cerebellum	15	90
cerebral value as per cent of cere- bellar value	80	73

On the other hand, in other species such as ox, pig, rabbit, sheep and mink, cerebellar activity was found to be less (Wu, 1963). This was also true of the cat (Berl, 1966). This could account for the differences between the patterns of enzyme distribution in rat and cat brains (Table 26). However, in both cases the activity was found to be less in the corpus callosum.

Section C

OXYGEN UPTAKE BY BRAIN TISSUE SLICES AND HOMOGENATES

The absolute values for oxygen uptake under different conditions are presented in Tables 27 and 28. The values for the LP group are presented as per cent of HP values in Table 29. Table 30 compares oxygen uptake under different conditions.

Some interesting observations emerge from the data. First of all, both with slices and homogenates the increase in oxygen consumption over endogenous respiration was more with glucose as substrate than with glutamate as substrate. Similar observations have been made by Ghosh and Quastel (1954). However, Weil-Malherbe (1936) found an increased respiration with glutamate but this was when the addition was made to a basal medium containing glucose. The amount of glucose added and the concentration of electrolytes also differed in this study (Table 31).

rogion	values as per cen	t of cerebellu
region	rat (present study)	cat (Berl,1966)
cerebellum	100	1 0 0*
medulla	73	91
pons	80	100
midbrain	80	98 *
visual cortex	100	213
hippocampus	67	134
basal ganglia	60	139*
hypothal amus	67	121
corpus callosum	60	66

Table 26: Comparison of the regional distribution of glutamine synthetase activity in the rat*

.

κ.

1

1

.

*Corresponding regions studied for cerebellum,midbrain and basal ganglia were cerebellar hemispheres,midbrain tegmentum and caudate nucleus respectively.

đ	
fed	
rats	
in	
brain	
the	
DL'	
us (
it regions of the brain in	
ent	
fer	
of different	
of	
ce s	
slid	
tissue slices	
tiss	
ain 1	
bra	
by	Ø
ake	diet
upti	and HP diets
cen	puq
Oxygen uptake by	LP a
27: (
Table	
54	

1 111+5.0(102-119) 93+4.0 86-100) 73+3.9 67-80) 66+2.5(63-71)45+5•4 39-56) 47+1.245-59) 39+1.937-43) 57+4.3(49-69) 54+6.4 42-63) ng tissue per hour glutamate 39 8 H (56-63)82+2.0 (80-86) (65-68)62+2.358-66) 70+6.5(60-82) 57+4.9(48-65) 43+3.9(38-51) 57+2.752-61) 46+4.1(39-53) 74 37 LP of oxygen uptake per 100 mg 122+13.9(108-150) 142+4.9(133-150) 113+7.9(99-132) 105 ± 6.6 (97-118) 133+4.0(124-141) 97 ± 7.4 (82-105) 70+2.4(66-74) 79+9.664-97) 79+6.567-89) 109 67 HP 101+1.7(98-104) 111+5.5(101-120) 110+3.9(103-121) 111 ± 7.5 (99-125) 83+2.2 (82-88) 87 ± 5.3 (82-98) 58+3.8(51-64)91+2.786-94)64+7.1(53-77) LP 06 53 37+2.9(32-42) 31+1.929-35) 48+4.4(39-59) 39+3.5(32-44) 54+0.952-55) 47 + 4.939 - 56) 54+5.2(46-64) 53+2•6 (49-58) 37+3.531-43) microliters Ē 61 31 none 33+0.632-34) 46+3.442-53)27+4.5(18-33) 49+2.4(46-54)32+4.821-39) 34+1.232-36) 31+4.720-43) 39+1.937-43) 44+3.8LP 49 28 determi-animals 15 15 15 18 15 20 18 15 15 က ð 10.0f nations 3 က က 4 0 က က တ က -----olfactory lobes corpus callosum residual brain cortex ganglia hypothal amus hippocampus cerebellum midbrain me du l l a visual region basal pons

Table 28: Oxygen uptake by brain tissue homogenates of different regions of the brain in rats fed LP and HP diets

.

,

		microliters	iters of	oxygen uptake	per	100 mg tissue	r hou
region	no.of	I		g]u(glucose	glutamate	ate
	STEMTIE	1	HP	ГЪ	P.		HP
cerebellum	en	35	29	64	ត្តស្	45	43
medulla	9	23	17	30	30	34	22
pons	Ŋ	22	18	41	31	23	21
mi dbra i n	, NO	36	41	64	70	44	53
olfactory lobes	0	32	42	50	68	41	57
hippocampus	ы С	44	ເຊິ່	80	64	63	5
hypothal amus	15	37	41	62	70	54	53
residual brain	4	41	50	65	73	49	61
Values based on It was not poss corpus callosum	one ible	term. get	•	for the visual cortex,	cortex,	basal ganglia and	a and

Table 29: Comparative effects of a low protein diet on oxygen uptake of brain tissue

.

slices and homogenates

region			wi en	hout al	lowing respi	for atio		el	aføter dogeno	allowin s respi	g for ration
	substrate added	none	glucose	gluta- mate	none	emogenation glucose	te gluta- mate	glucose	6 4 1	homofe glucose	nate gluta- mate
cerebellum		86	75	127	121	116	105	10	325	112	71
medulla		89	73	96	135	130	154	60	130	123	220
pons		110	91	110	122	132	110	77	113	146	33
midbrain	•	65	96	105	88	91	83	122	344	16	67
olfactory lobes	lobes	100	105	115	76	74	72	110	153	69	60
visual cortex	tex	85	106	106	ł	ł	I	125	185	I	ı
hippocampus	Ø	94	78	74	126	125	115	71	59	124	95
basal ganglia	lia	50	76	61	I	ł	I	16	. 11	I	I
hypotňalamus	ŚŊ	80	63	91	06	89	102	85	125	86	142
corpus callosum	losum	06	85	95	ŀ	I	ł	81	129	1	, 1
residual brain	rain	92	06	92	82	89	80	86	68	104	73

•

105

.

Table 30: Relative increase in oxygen uptake by brain tissue slices and homogenates with the addition of glucose and glutamate in LP and HP animals

		0xygen	uptake	as per ce	cent of end	endogenous	uptake	
	un une can the sam the sam the	slices				homod	homogenate	
region		1	HP H			! ! !	H	
substrate added	glucose	gluta- mate	glucose	gluta- mate	glucose	gluta- mate	glucose	gluta- mate
cerebellum	284	178	330	122	183	129	190	148
medulla	176	139	214	127	170	148	176	129
pons	188	126	226	126	186	105	172	117
midbrain	355	194	235	119	178	122	171	129
olfactory lobes	213	159	202	138	156	128	162	136
visual cortex	241	152	194	122	ł	1	I	I
hippocampus	252	186	302	236	182	143	183	157
basal ganglia	374	211	246	172	I	ł	I	١,
hypothal amus	184	151	177	133	168	146	171	129
corpus callosum	204	132	216	126	ı	i	I	1
residual brain	178	137	183	138	159	120	146	122
	,				, , ,			

component	millimoles p	er liter
component	Weil-Malherbe (1936)	present study (New York, 2007)
sodium	151.0	165.0
potassium	4.8	7.7
calcium	2.6	nil
magnesium	1.2	1.5
chloride	132.0	134.0
sulphate	1.2	1.5
phosphate	16.0	19.5
bicarbonate	nil	4.6
glucose	11.0	nil
	ч.	

Table 31: Basal medium in the present studies compared with that of Weil-Malherbe (1936)

-

,

In the case of slices (Table 30) the per cent increase in oxygen consumption tends to be more in the HP group as compared to the LP group with the addition of glucose and less with the addition of glutamate although this is not true of all regions. In other words, the addition of glucose increases the difference between the two groups in the case of slices. This pattern is not observed with homogenates.

In many regions, the rate of endogenous respiration tends to be more in the HP group this difference being most evident in the case of the basal ganglia. This superiority is maintained with the addition of glucose as can be seen from percentage values presented in Table 29. However, when glutamate is used as substrate this difference either disappears or is reversed except in the case of hippocampus and basal ganglia. This trend is much more evident when the values are considered after allowing for endogenous respiration. Thus the data suggest the possibility of a greater accessibility of the brain tissue of LP animals to glutamic It will be recalled in this connection that dietary acid. supplementation with glutamic acid had differential effects on the two groups (Rajalakshmi et al., 1969).

Oxygen consumption tends to be decreased when homogenates are used in place of tissue slices except under

endogenous conditions in the LP group. This is clearly evident when the values are considered in terms of percentages (Table 32). The decrease in respiration when homogenates are used in place of tissue slices has been observed by other investigators (e.g., Reiner, 1947; Trojanova and Mourek, 1968). This is not surprising as ground tissue has to be supplied with many more nutrients than sliced tissue for efficient respiration (McIlwain, 1959).

The effects of homogenization are more evident in the HP group (Table 32) so that the differences between the two groups are decreased (Table 29). A similar phenomenon has been found in the dog brain in which age differences in oxygen consumption by brain tissue were less evident when homogenates were used in place of slices (Reiner, 1947).

The most striking observation is, however, the disappearance of the difference between the two groups with regard to oxygen consumption when glutamic acid is used as substrate as can be seen from the comparisons made in Table 29. In fact the difference would appear to be reversed in some cases if the values are considered after

Table 32: Oxygen uptake of brain tissue homogenates as compared to that of slices in LP and HP animals

allowing for endogenous respiration. Further, when such allowance is made, the utilization of glutamate appears to be more efficient in the HP group when homogenates are used and less efficient when slices are used. The former observation was also made on homogenates prepared from whole brain (Table 33).

Table 33: Oxygen uptake by whole brain homogenate of rats fed LP and HP diets

substrate added		ptake ters per issue per		increase bstrate
	LP	HP	LP	HP
none	55 <u>+</u> 2.9	45 <u>+</u> 4.7	-	-
glucose	83 <u>+</u> 4.9	75 <u>+</u> 3.8	51	67
glutamate	63 <u>+</u> 1.5	60 <u>+</u> 3.0	14	33

Three animals were used in each group.

The reversal of the differences in the utilization of glutamate between the LP and HP groups when homogenates replace slices reinforces the suspicion that there are differences in cell permeability between the two groups. In this connection, as mentioned earlier, Platt and Stewart (1969) have reported changes in the appearance of the cellmembrane which appeared less distinct in the cerebellum of protein deficient dogs. It should be pointed out however, that the results on homogenates of different areas do not include the data on the visual cortex, basal ganglia and corpus callosum and are based only on one determination in each case.

Both the amount of oxygen consumed and the effects on the same of the LP diet are found to vary from region to region. These variations, however, are not consistent. The corpus callosum, pons and medulla give relatively smaller values than other regions for oxygen consumption under all conditions (Tables 27 and 28). The values for the hypothalamus, visual cortex and the residual brain containing the thalamus tend to be generally higher. These differences are consistent with the observation of Tower (1959) who found the uptake of glutamic acid to be less in sub-cortical white matter than in cortical regions. The effects of the LP diet are most evident in the ganglia when slices are used and in the olfactory lobes when homogenates are used (Table 29). But the picture with regard to other regions varies under different conditions.

The relatively lower oxygen consumption of the medulla and the higher consumption of the cerebellum, basal ganglia and visual cortex with glucose as substrate have also been reported in the dog brain (Himwich and Fazekas, 1941). Their results are compared in Table 34 with the present data.

The LP values for different regions were found to correlate with HP values for the corresponding condition (Table 35a).

Further, in either group, oxygen uptake under endogenous conditions was generally found to correlate with that when either glucose or glutamate was added (Table 35b) but no consistent correlations were found when values obtained with slices and homogenates were compared (Table 35c). This is consistent with the differential effects of homogenization in different groups and in different regions.

In summary, it may be said that in many brain regions <u>in vitro</u> oxygen uptake of brain tissue slices tends to be more in the HP animals. This difference tends to be either decreased or reversed with the use of glutamate as substrate. A similar phenomenon is observed when homogenates are used in place of slices. The differences found between the two groups with regard to the utilization of glutamate by tissue slices disappear in the case of most regions with the use

re	gion			of oxygen g per hour
rat (present (dog Himwich and	presen	t study	Himwich
study) F slice	azekas,1941) mince	LP	HP	and Fazekas, 1941 (mince)
cerebellum	cerebellar cortex	0.91	1.22	1.40
medulla	medulla	0,58	0.75	0.69
midbrain	midbrain	1.10	1.13	0.92
visual cortex	cerebral cortex	1.11	1.Ò5	1.16
basal ganglia	caudate nucleus	101	1.33	· 1.36

1 I

ı.

,

Table 34: Oxygen uptake by different parts of the brain

.

.

٨

•

	'r' between LP a	nd HP values
substrate added	slices	homogenate
aone	0.59	0.79*
glucose	0.84**	0.74*
glutamate	0.80**	0.78*

Table 35a: Product moment correlations betweenoxygen uptakes under different conditions

.

.

Table 35b;

•

	correlat	ions with e	ndogenous	values
		ices		genate
substrate	glucose	glutamate	glucose	glutamate
LP	0.35	0.76**	0.96**	0.93**
HP	0.61*	0.73*	0.97**	0.96**
	<i>,</i>		*	

Table 35c:

.

	'r' between slices	and homogenate
substrate added	LP	HP
none	0.61	0.76*
glucose	0.92**	0.46
glutamate	0.96**	0.60

.

.

1

*P < 0.05

**P < 0.01

,

ł,

of homogenates. These observations suggest the possibility of differences in cell-permeability to glutamic acid between the two groups.

Section D

ASCORBIC ACID AND GLUTATHIONE

As mentioned earlier studies were conducted in order to confirm previous studies on ascorbic acid (Rajalakshmi <u>et al.</u>, 1967) and to extend the same to the regional distribution of glutathione in the brain and its relation to that of ascorbic acid.

The distribution of ascorbic acid in different regions of the brain is shown in Table 36. The results confirm previous observations of a decrease in brain ascorbic acid with protein deficiency. No overlap was found between the values for the LP and HP groups except in the case of the basal ganglia. The regions most affected by the LP diet were the hypothalamus, pons, visual cortex and hippocampus. The first three of these regions were also found to be more affected in the previous studies. The basal ganglia were not affected either in the present or previous studies. However, the olfactory lobes which were found to be affected in the present studies were not affected in the previous studies.

.

me ei en	no.	of	ascorb: (mg per	ic acid 100 g)	LP as %
region	determi- nations	animals	LP	HP	of HP
cerebellum	6	6	37.0 ± 0.7 (31.5-39.6)	42.4 <u>+</u> 0.7 (40.2-44.6)	87**
medulla	4	. 8	13.7 ± 0.6 (12.6-15.1)	17.7 <u>+</u> 0.7 (15.8–18.6)	77**
pons	4	8	11.5 <u>+</u> 0.2 (11.0-12.1)	17.0 <u>+</u> 0.5 (16.3-18.3)	68**
midbrain	4	8	19.9 ± 0.6 (18.2-21.0)	26.4 ± 1.2 (23.3-29.0)	75**
olfactory lobes	4	8	36.6 <u>+</u> 0.9 (34.2–38.7)	42.7+0.6 (41.6-43.9)	86**
visual cortex	4	8 ΄	26.7 <u>+</u> 1.5 (24.1-30.2)	38.6 <u>+</u> 0.5 (37.3-39.5)	69**
hippocam p us	4	8	30.3+0.8 (27.9=31.6)	42.1+0.6 (40.9-43.3)	72**
basal ganglia	4	8	31.0 <u>+</u> 0.6 (29.8-32.3)	31.9+1.00 (30.1-34.1)	97
hypothal amus	2	8	25.3 <u>+</u> 2.6 (22.6,27.9)	40.2 <u>+</u> 1.9 (38.3,42.1)	38*
corpus callosum	1 2	8	19.8 <u>+</u> 1.5 (18.3,21.2)	26.0 <u>+</u> 2.3 (23.7,28.3)	76
residual brain	6	6	29.1 <u>+</u> 1.1 (26.8-33.8)	34.3+0.7 (32.3-37.1)	85**

Table 36: Distribution of ascorbic acid in different regions of the brain in rats fed LP and HP diets

.

.

*Difference significant at 5% level **Difference significant at 1% level.

•

,

In these as well as in other studies (Rajalakshmi <u>et al.</u>, 1967; Rajalakshmi and Patel, 1968) the cerebellum, olfactory lobes, hypothalamus and visual cortex had higher concentrations of ascorbic acid than other regions such as the brain stem (pons, medulla and midbrain). In the present studies, the hippocampus was also found to have a higher concentration.

The data on glutathione are presented in Table 37. The range of values compares with that reported by other investigators for the whole brain (e.g., Isherwood,1959).

The values were found to be decreased with protein deficiency in all the regions. But the differences were not statistically significant in the case of some regions, namely, the midbrain, the basal ganglia and the corpus callosum. In the last case, however, there was no overlap in the values for the two groups. It will be recalled that the ascorbic acid concentration of the basal ganglia was also not affected. However, these results are based on a small number of observations.

The values for ascorbic acid in different regions were found to be significantly correlated with those for glutathione in both the LP and HP groups, the productmoment correlations being 0.76 in the former, and 0.77 in

region	no.			thione r_100_g)	LP as % of
	determi- nations	animals	LP	HP	HP
cerebellum	5	15	28.1 <u>+</u> 1.2 (24.4-31.1)	31.0 <u>+</u> 0.4 (30.2-31.9)	91*
medulla	3	18	20.0 <u>+</u> 0.5 (19.3-21.0)	22.7 ± 1.0 (21.0-24.4)	88*
pons	3	15	18.0 <u>+</u> 0.4 (17.6-18.9)	19.5 ± 0.6 (18.5-20.6)	92
mi dbrain	3	15	24.1 <u>+</u> 0.6 (23.1-25.2)	25.2 <u>+</u> 0.8 (23.9-26.5)	96
olfactory lobes	s 3	18	26.0 <u>+</u> 1.1 (24.4-28.1)	31•1 <u>+</u> 1•3 (28•6-33•2)	84*
visual cortex	3	15	27.9 <u>+</u> 0.8 (26.0–29.0)	32.4 <u>+</u> 0.9 (30.7-33.6)	86*
hippocampus	3	15	28.4 <u>+</u> 0.3 (28.1-29.0)	29.4 <u>+</u> 0.2 (29.0-29.8)	97*
basal ganglia	3	15	30.4 <u>+</u> 0.5 (29.4-31.1)	32.9 <u>+</u> 1.2 (31.5-35.3)	92
hypothal amus	2	30	25.6 ± 0.4 (25.2,26.0)	28.4 <u>+</u> 0.7 (27.7,29.0)	90
corpus callosur	n 2	30	15.4 <u>+</u> 0.7 (14.7,16.0)	18.3 <u>+</u> 0.7 (17.6,18.9)	84
residual brain	5	5	25.3 <u>+</u> 0.5 (24.4–27.3)	29.6+0.9 (26.5-31.1)	95**

Table 37: Distribution of glutathione in different regions of the brain in rats fed LP and HP diets

•

ç

*Difference significant at 5% level. **Difference significant at 1% level. -

.

the latter. In studies on women, similar correlations were obtained between the glutathione and ascorbic acid concentrations of placenta (r=0.42, P < 0.01) and blood (r=0.36, P < 0.01). However, the effects of protein deficiency on the two variables show some differences when the percentage values for the LP group are compared and the regions most affected in the case of ascorbic acid are not necessarily those most affected in the case of glutathione. It will be seen that the deficit of about 10% in brain glutathione with protein deficiency was much less than that of about 40% in liver glutathione found in other studies (Rajalakshmi and Ramakrishnan, 1969). This is consistent with the pattern for other substances.

In conclusion, the present studies mostly confirm previous observations on the effects of protein deficiency on the ascorbic acid content of different regions in the brain and show that the glutathione content of different regions in the brain is also similarly affected. The concentrations of the two substances in different regions were found to be correlated.

Section E

A RESUME OF THE SECTIONS A-D

The data described in the preceding sections were reviewed in order to see if they suggest a general pattern

121

of metabolic activity in different regions and their susceptibility to protein deficiency.

The values for each region are expressed as percentage of the lowest value in Tables 38 and 39. It will be seen from the same that the extent of variation within brain regions differs with different parameters. The minimum variation is found in the case of GOT and protein. About a 100% variation is found in the case of glutathione, GDH, glutamyl transferase and respiration. It is much higher in the case of GPT (200%) and GAD (500%). In the case of vitamin C and glutamine synthetase the variation in the LP group is more than that of HP group. This is also true to some extent of protein, GAD and GOT. It can also be seen from these tables that some regions tended to have relatively high values for all the parameters whereas others had consistently smaller values. Generally low values were obtained in the case of the corpus callosum. This was particularly evident in the case of GAD and GPT. Medulla and pons also had generally low values as compared to other regions except in the case of GDH. On the other hand the values were found to be high or intermediate in the case of olfactory lobes, visual cortex and the residual brain containing the thalamus. This was also mostly true of the cerebellum, hypothalamus and midbrain'. The hippocampus and basal ganglia had more

Table 38: Enzyme activities in different regions of HP animals expressed as

۱

per cent of lowest value

-.

region	HD 9	GAD	6РТ	GOT	glutamyl trans- ferase	glutamine synthetase
cerebellum	105	275	338	109	177	167
medulla	179	275	277	100	163	122
pons	153	200	246	105	173	133
midbrain	163	513	277	102	169	133
olfactory lobes	121	313	277	105	199	211
visual cortex	116	375	385	106	179	167
hippocampus	100	250	192	110	131	111
basal ganglia	105	375	215	113	117	100
hypothalamus	126	663	123	115	112	111
corpus callosum	100	100	100	1	100	100
residual brain	121	400	254	118	143	133
highest lowest	1.8	6•6	9 ° 8	1.2	2.0	2.1

Table 39: HP values for protein, glutathione, ascorbic acid and in vitro oxygen uptake expressed as per cent of the lowest value

of intermediate values. The higher values generally obtained for the cerebellum, olfactory lobes, visual cortex, residual brain and hypothalamus are consistent with the greater proportion of grey matter in those regions. The high concentration of GDH in the meduila and pons in contrast to low values obtained in the case of most other parameters is indeed intriguing.

The effects of protein deficiency varied with the parameter measured and the regions studied. They are compared in Taoles 40-41. It will be seen from the same that the enzymes GDH, GAD, GPT, GOT and vitamin C showed more change than the other parameters measured. The greater sensitivity of some regions as compared to others is strikingly evident in the case of vitamin C (hypothalamus), GAD (hypothalamus and basal ganglia), GPT (medulla and pons) and glutamine synthetase (basal ganglia). The significance of these differences is far from clear in the state of our present knowledge of the biochemistry of different regions.

region	weight	GDH	GAD	GPT	GOT 1	glutamyl trans- ferase	glutamine synthetase
cerebellum	91	80	73	64	75	101	93
medulla	89	80 10 10	59	42	68	93	82
suod	06	97	. 75	56	72	91	92
midbrain	89	. 81	76	68	68	96	, 100
olfactory lobes	81	84	, 100	86	78	106	84
visual cortex	83	91	63	66	75	93	87
hi ppocampus	06	19	85	112	16	95	06
basal ganglia	74	95	53	61	83	83	56
hypothal amus	. 63	88	51	106	73	84	110
corpus callosum	1 6	68	63	85	1	94	68
residual brain	06	87	66	61	72	93	92
range	74-92	68-97	51-100	40-112	68-83	83-106	56-110

, •

Table 40: LP value for weight and enzyme activity expressed as per cent of HP value

,

125

1

1

÷

-

region	protein	gluta- thione	ascorbic acid	oxygen none f	uptake glucose	by slices glutamate
cerebellum	86	91	87	86 、	75	127
medulla	77	88	77	, 89	73	98
pons	75	92	68	110	91	110
midbrain	91	96	75	65	96	105
olfactory lobes	93	84	86	100	105	115
visual cortex	87	86	69	85	106	106
hi ppocampus	94	16	72	94	78	74
basal ganglia	108	92	16	50	76	61
hypothal amus	83	06	38	80	83	91
corpus callosum	74	84	76	06	85	95
residual brain	86	95	85	92	06	92
range	74-108	84-97	38-97	50-110	73 - 106	61-127

Table 41: LP value for protein, glutathione, ascorbic acid and in vitro oxygen uptake expressed as per cent of HP value