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In this chapter, the authors have examined the trajectory controllability (TC) of

second-order evolution systems while taking impulses into account. The cosine fam-

ily of operators produced by the linear component of the system, the integral version

of Gronwall’s inequality, and the idea of nonlinear functional analysis were used to

describe the TC findings. Applications for both finite-dimensional and infinite-

dimensional systems of the TC-controlled systems are given.
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Vishant Shah 5.1. INTRODUCTION

5.1 Introduction

The ability to be controlled is a fundamental qualitative quality of systems. In order

to move a system from a given starting state to a desired end state or one that is

near it, one must identify the controllers that will do it. Kalmann was the first

to introduce the notion of controllability using the concept of functional analysis.

The monographs [125, 140, 22], and articles [70, 82, 80, 90, 51, 130, 72, 45] and

reference their work discuss the study of various types of controllabilities for the

linear, nonlinear systems using functional analytic approach.

One should determine the controller that moves the system from the supplied be-

ginning state to the desired final state in order to examine different types of con-

trollability of the system. This style of controller, meanwhile, could not be cost-

effective. Hence, George [122] introduced the Trajectory Controllability (TC) prob-

lems. Instead of leading the system from a specific starting condition to the intended

end state, the challenge has been to build a control that directs it along a preset

course. When launching a rocket into space, a specific path and the intended loca-

tion are necessary for cost-effectiveness. Consequently, TC is explored by numerous

researchers [27, 137, 133]. The authors in [133] investigated the TC of a semi-linear

parabolic system.

On the other hand, in many systems, the state abruptly changes at a specific moment

in time or a small time-period. These systems might be referred to as instantaneous

impulsive systems or noninstantaneous impulsive systems. Applications and char-

acteristics of these systems are discussed in [135, 74, 156, 129, 121] and reference

therein. Shah et al. discussed the TC of a first-order non-instantaneous impulsive

system on the Banach space in 2021, [136].

Many evolution systems representing wave phenomena are modeled into second-

order systems. Therefore, in this article, the authors have discussed the TC of

second order system  x′′(t) = Ax+ F(t, x(t), x′(t)) +ϖ(t),

x(0) = x10, x′(0) = x20,
(5.1.1)
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by considering non-instantaneous impulses into account over the finite time interval

Ω = [0, T0]. Here, at each time t, the state lies in X, A is the linear on X,
F : Ω × X3 → X is a non-linear function, and ϖ(t) is the trajectory controller

of the system.

5.2 Preliminaries

Definition 5.2.1 (Complete Controllability). [136] ”The evolution system com-

pletely controllable on the interval Ω = [0, T0] if for any x0, x1 ∈ X there exists a

controller ϖ(t) in the control space U such that the state of system steers initial

state x0 at t = 0 to desire final state x1 at t = T .”

Definition 5.2.2 (Total Controllability). [136] ”The evolution system is totally

controllable on the interval Ω = [0, T0] if it is completely controllable over all its

subintervals [tk, tk+1].”

Let CΩ be the set of all functions x́(·) defined over Ω satisfying the initial state and

final state x(0) = x0 and x́(T ) = x1, respectively. This set CΩ is called the set of

all feasible trajectories. The controller obtained from the concept of complete and

total controllability for the linear system will be optimal but for the semi-linear or

nonlinear system may not be optimal. To overcome this situation one has to design

a trajectory having optimum energy or cost and define a controller in such a way

that the state of the system steers along this trajectory. Finding the controller that

steers the system on the prescribed optimal trajectory from an initial state to the

desired final state is called TC.

Definition 5.2.3 (TC). [136] ”The evolution system is trajectory controllable (T-

Controllable) if for any trajectory x́ ∈ CT , there exists L2 control function w ∈ U
such that the state of the system x(t) satisfy x(t) = x́(t) almost everywhere over Ω.”

In TC, one must identify the controller that will cause the system to steer along a

predetermined course or trajectory from an arbitrary beginning state to the desired

final state. Consequently, TC is the most powerful kind of controllability.
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5.3 TC without Impulses

In this section, the authors have discussed the TC of the second-order system x′′(t) = Ax+ F(t, x(t), x′(t)) +ϖ(t),

x(0) = x10, x′(0) = x20,
(5.3.1)

without considering the impulses over Ω. Assuming F good enough to have a unique

mild solution

x(t) = C(t)x10 + S(t)x20 +
∫ t

0

S(t− τ)[F(τ, x(τ), x′(τ)) +ϖ(τ)] dτ, (5.3.2)

for all t ∈ Ω and any measurable function ϖ(t). Where C(·) is a strongly continuous

cosine family of operators generated by the linear part A and S(·) is associated sine

family of operators.

Theorem 5.3.1. The system (5.3.1) is Trajectory controllable over Ω if F is mea-

surable with t, continuous with respect to other arguments, and there exist positive

constants LF1 and LF2 such that

∥F(t, x1, x́1)−F(t, x2, x́2)∥ ≤ LF1∥x1 − x2∥+ LF2∥x́1 − x́2∥.

Proof. Let u(t) be any trajectory from CΩ which steers the evolution equation (5.3.1)

from the initial state x10 to desired final state x11. Define trajectory controller ϖ(t)

as

ϖ(t) = u′′(t)−Au(t) + F(t, u(t), u′(t)), (5.3.3)

and plugging it in the system (5.3.1), the system becomes:

x′′(t) = Ax+ F(t, x(t), x′(t)) + u′′(t)−Au(t) + F(t, u(t), u′(t)). (5.3.4)

Considering z(t) = x(t)− u(t), the system (5.3.4) becomes

z′′(t) = Az(t) + F(t, x(t), x′(t))−F(t, u(t), u′(t)), (5.3.5)

with conditions z(0) = 0, z′(0) = 0, and the mild solution of the system (5.3.5)
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satisfies

∥z(t)∥ ≤
∫ t

0

∥S(t− τ)∥ ∥F(τ, x(τ), x′(τ))−F(t, u(t), u′(t))∥ dτ.

Assuming properties of strongly continuous cosine family of the operators generated

by linear part A and the hypotheses of the theorem,

∥z(t)∥ ≤
∫ t

0

∥S(t− τ)∥LF1 ∥x(τ)− u(τ)∥+ LF2 ∥x′(τ)− u′(τ)∥ dτ

≤ K

∫ t

0

(LF1 ∥z(τ)∥+ LF2 ∥z′(τ)∥) dτ, K = ∥S(·)∥.

Differentiating (∥z(t)∥ is differentiable a.e) the above inequality

∥z′(t)∥ ≤ K (LF1∥z(t)∥+ LF2∥z′(t)∥) ,

simplifying

∥z′(t)∥ ≤ KLF1

1−KLF2

∥z(t)∥.

Applying a differential form of Grönwall’s inequality ∥z(t)∥ = 0 a.e., and thus x(t) =

u(t) a.e. Hence the system (5.3.1) is trajectory controllable over Ω.

Example 5.3.1. The equations of motion for the artificial satellite due to the oblate-

ness of the earth are modeled into second-order equations

x′′(t) = − µ

r3
x− 3µR2J2x(x

2 + y2 − 4z2)

2r7
,

y′′(t) = − µ

r3
y− 3µR2J2y(x

2 + y2 − 4z2)

2r7
,

z′′(t) = − µ

r3
z− 3µR2J2y(3x

2 + 3y2 − 2z2)

2r7
,

(5.3.6)

where G is the universal gravitational constant, R, M are radius, mass of earth,

µ = GM , J2 is zonal coefficient, and r =
√
x2 + y2 + z2. From the various stud-

ies, it was found that the motion of the artificial satellite is unstable under the

oblate earth if the initial velocity is low and sometimes it can hit the surface of the

earth [138]. Therefore to make the motion in the prescribed orbit one has to plug the

controller into the satellite so that they follow a specific path. Let [u1(t), u2(t), u3(t)]

and [w1(t), w2(t), w3(t)] be the prescribed trajectory and the trajectory controller for
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the satellite, respectively. Plugging it in (5.3.6), the equations of motion becomes:

x′′(t) = − µ

r3
x− 3µR2J2x(x

2 + y2 − 4z2)

2r7
+ w1(t),

y′′(t) = − µ

r3
y− 3µR2J2y(x

2 + y2 − 4z2)

2r7
+ w2(t),

z′′(t) = − µ

r3
z− 3µR2J2y(3x

2 + 3y2 − 2z2)

2r7
+ w3(t).

(5.3.7)

Since the motion of many low earth satellites has a circular orbit having fixed radius

r = a from the center of the earth. Therefore, the equation of motion for the circular

orbit r = a becomes:

x′′(t) = − µ

a3
x− 3µR2J2x(x

2 + y2 − 4z2)

2a7
+ w1(t),

y′′(t) = − µ

a3
y− 3µR2J2y(x

2 + y2 − 4z2)

2a7
+ w2(t)

z′′(t) = − µ

a3
z− 3µR2J2y(3x

2 + 3y2 − 2z2)

2a7
+ w3(t).

(5.3.8)

These motion equations have the following form

r̄′′(t) = Ar̄(t) + F(t, r̄(t)) +ϖ(t), (5.3.9)

where, r̄ = [x(t), y(t), z(t)] the position vector of the satellite,

A =


− µ

a3
0 0

0 − µ

a3
0

0 0 − µ

a3

 , F(r̄(t)) =


−3µR2J2x(x

2 + y2 − 4z2)

2a7

−3µR2J2y(x
2 + y2 − 4z2)

2a7

−3µR2J2y(3x
2 + 3y2 − 2z2)

2a7

 .

The function F(r̄(t)) is differentiable with respect to r̄ as all of its partial deriva-

tives exist and are continuous over any finite time interval. The linear operator A
generates a strongly continuous cosine family of operators

C(t) =


cos

√
µ

a3
t 0 0

0 cos

√
µ

a3
t 0

0 0 cos

√
µ

a3
t

 ,
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and associated sine family

S(t) =

√
a3

µ


sin

√
µ

a3
t 0 0

0 sin

√
µ

a3
t 0

0 0 sin

√
µ

a3
t

 .

Thus the motion of the satellite (5.3.9) is trajectory controllable for the finite time

intervals. Let the initial position of the satellite be

r̄0 =
[
0, −5888.9727, −3400

]
,

having initial velocity v̄0 = [7, 0, 0]. Figure 5.1 shows that the motion of the satellite

is not stable without a controller. Data:

Figure 5.1: The motion of the satellite is not stable without a controller.

r̄0 = (0,−5888.9727,−3400), v̄0 = (7, 0, 0), R = 6378.1363, a = |r̄0|,
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µ = G ∗M , J2 = 1082.63 × 10−6, Time Span: 540000 sec. Now considering the

trajectory for the motion of the satellite

u(t) =

[
7

√
a3

µ
sin

√
µ

a3
t −5888.9727 cos

√
µ

a3
t −3400 cos

√
µ

a3
t

]
,

and define the trajectory controller ϖ(t) = ū′′ − Aū − F(ū) and plugging into the

equation of motion (3.4.4) the state of the system follows prescribed path. Figures 5.2

and 5.3 show the trajectory and state after plugging the controller.

Figure 5.2: Trajectory of System.
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Figure 5.3: state after plugging the controller.

5.4 TC with Impulses

This section discusses the TC of the non-instantaneous impulsive second-order sys-

tem
x′′(t) = Ax+ F(t, x(t), x′(t)) +ϖ(t), t ∈ [0, t1) ∪ [s1, t2) · · · ∪ [sρ, T0]

x(t) = Gk(t, x(t)) +ϖk(t), t ∈ [t1, s1) ∪ [t2, s2) · · · ∪ [tρ, sρ),

x(0) = x10, x′(0) = x20,

(5.4.1)
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over Ω. Attributes of the system (5.4.1) are good enough to have a unique mild

solution

x(t) =



C(t)x10 + S(t)x20

+

∫ t

0

S(t− τ) [F(τ, x(τ), x′(τ)) +ϖ(τ)] dτ, t ∈ [0, t1),

Gk(t, x(t)) +ϖk(t), t ∈ [tk, sk),

C(t− sk)Gk(sk, x(sk)) + S(t− sk)G ′
k(sk, x(sk))

+

∫ t

sk

S(t− s) [F(τ, x(τ), x′(τ)) +ϖ(τ)] dτ, t ∈ [sk, tk+1),

(5.4.2)

for all t ∈ Ω and any measurable function ϖ(t), where C(·), S(·) are a strongly

continuous cosine family of operators generated by the linear part A, associated sine

family of operators, respectively and G ′
k denote the derivative of Gk with respect to

t.

Assumptions 5.4.1. (A1) The linear part A of the equation (5.4.1)is an infinites-

imal generator of a strongly continuous cosine family of operators;

(A2) The nonlinear function F is measurable with respect to argument t over Ω and

there exist constants r0, LF1, and LF2 such that

∥F(t, x1, x2)−F(t, x́1, x́2)∥ ≤ LF1∥x1−x́1∥+LF2∥x2−x́2∥, ∀xi, x́i ∈ Br0 ⊂ X, i = 1, 2;

(A3) The nonlinear functions Gk and its time derivative G ′
K for known value of x(t).

Moreover there exist 0 < gk < 1 such that

∥Gk(t, x)− Gk(t, x́)∥ ≤ gk∥x− x́∥,∀x, x́ ∈ Br0 .

Theorem 5.4.1. The system (5.4.1) is trajectory controllable over Ω if hypotheses

(A1)–(A3) are satisfy.

Proof. Let u(t) be any trajectory from CΩ which steers the evolution equation (5.4.1)

from the initial state x10 to desired final state x11 satisfying u(t+k ) = x(t+k ). Over

the interval [0, t1) the system becomes:

x′′(t) = Ax+ F(t, x(t), x′(t)) +ϖ(t)x(0) = x10, x′(0) = x20. (5.4.3)
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Plugging the controller

ϖ(t) = u′′(t)−Au(t) + F(t, ¯p(t), u′(t)), (5.4.4)

in the system (5.4.3), and proceeding in same way as in Theorem 5.3.1, the system is

controllable over the interval [0, t1). Over the interval [tk, sk), the system becomes:

x(t) = Gk(t, x(t)) +ϖk(t). (5.4.5)

Plugging the controller

ϖk(t) = u(t)− Gk(t, u(t)), (5.4.6)

in the system (5.4.4) the system becomes x(t) − u(t) = Gk(t, x(t)) − Gk(t, u(t)).
Taking z(t) = x(t)− u(t) and computing

∥z(t)∥ = ∥Gk(t, x(t))− Gk(t, u(t))∥ ≤ gk∥z(t)∥.

Thus, (1− gk)∥z(t)∥ ≤ 0. Since gk < 1 therefore ∥z(t)∥ = 0 a.e. Hence, the system

is T-controllable over [tk, sk), ∀k = 1, 2, · · · , ρ.

Over [sk, tk+1) the system becomes:

x′′(t) = Ax+ F(t, x(t), x′(t)) +ϖ(t), (5.4.7)

with initial conditions x(sk) = Gk(sk, x(sk)) and x′(sk) = G ′
k(sk, x(sk)). Since,

∥z(t)∥ = 0 for all t ∈ [tk, sk) and continuity of Gk leads to ∥z(sk)∥ = 0. Thus,

x(sk) = u(sk). Plugging the controller

ϖ(t) = u′′(t)−Au(t) + F(t, u(t), u′(t)), (5.4.8)

in the system (5.4.7) and assuming the hypotheses (A1)-(A3) and using the theo-

rem 5.3.1, the system is trajectory controllable over the interval [sk, tk+1). Hence,

the system (5.4.1) is trajectory controllable over Ω.
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Example 5.4.1. Consider the partial differential equation
∂2Z(t, x)

∂t2
= Zxx(t, x) + e−Z(t,x) +ϖ(t), t ∈

[
0, 1

3

)
∪
[
2
3
, 1

]
,

Z(t, x) =
1

2
sin (Z(t, x)) , t ∈

[
1
3
, 2
3

)
,

(5.4.9)

in the Banach space X = L2(Ω), Ω = [0, π], T0 = π, and with initial condition

Z(0, x) = Z0(x), Zt(0, x) = Z1(x),

and boundary conditions Z(t, 0) = Z(t, π) = 0. Define an operator A as AZ = Zxx

over the domain

Dom(A) =
{
y ∈ L2(Ω) : y′′ exist and z(0) = z(π) = 0

}
.

The operator A represented by

Az =
∞∑
n=1

−n2

〈
z,

√
2

π
sinnx

〉√
2

π
sinnx, z ∈ Dom(A).

The operator A is the infinitesimal generator of strongly continuous cosine family

C(·) on X defined by

C(t)z =
∞∑
n=1

cosnt

〈
z,

√
2

π
sinnx

〉√
2

π
sinnx,

and associated sine family S(·) on X defined by

S(t)z =
∞∑
n=1

1

n
sin t

〈
z,

√
2

π
sinnx

〉√
2

π
sinnx.

The evolution Eq. (5.4.9) can be formulated as the abstract equation in X = L2([0, 1])

as: 

d2υ

dt2
= Aυ(t) + F(t, υ(t)) +ϖ(t), t ∈

[
0, 1

3

)
∪
[
2
3
, 1

]
,

υ(t) = G1(t, υ), t ∈
[
1
3
, 2
3

)
,

υ(0) = υ0,
dυ

dt
(0) = 0.

(5.4.10)
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• The function F(t, υ) = e−υ is continuous function and there exist lF(r) = 1

on Br0 satisfying

∥F(t, υ1)−F(t, υ2)∥ ≤ ∥υ1 − υ2∥.

Thus, by Theorem the system (5.4.10) is T-controllable over [0, 1].

• Assuming that the derivative of 1
2
sin z , z′(t) exist over the interval [0, 1].

Then, the system (5.4.10) is T-controllable over [0, 1].

5.5 Conclusion

In this chapter, the authors have discussed the TC of the second-order systems

with and without impulses. The discussion of the TC of the system was obtained

using the concept of the cosine family of operators, nonlinear functional analysis,

and Grönwall’s inequality. Applications to the motion of the artificial satellite and

nonlinear one-dimensional wave equations are also added to validate the obtained

results.
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