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In this chapter, we have considered the non-instantaneous fractional integro-differential

evolution system with Hilfer fractional differential operator in the Banach space and

discussed its existence results for the mild solution for the equation with local and

non-local conditions. These results are obtained by applying the method of a C0

operator generated by the linear part of the equation combined with the concept of

nonlinear functional analysis and the fixed point theorems. We have discussed the

examples to highlight the applicability of the results.
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8.1 Introduction

Fractional calculus and differential equations became an important branch of ap-

plied mathematics. This is because of many problems from the fields of physical

sciences, chemical sciences, biological sciences, finance, and image processing which

are modeled using fractional differential operators and give better approximations

than those modeled using integer order differential operator [2, 99, 112]. Researchers

generalized the fractional order differential operator in a way that coincides with the

integer order differential operator and this leads to the existence of many differential

operators like Riemann-Liouville, Caputo, Grownwell-Letnikov, and Conformable

fractional differential operators. The qualitative properties and applications of frac-

tional dynamical systems are found in [41, 42, 155]. Sometimes the system with

non-local initial conditions gives better approximations than classical conditions.

The qualitative properties and applications of the non-local systems are found in

[47]. Hilfer came up with a new fractional differential operator which is a homo-

topy between Riemann-Liouville and Caputo fractional differential operators. The

qualitative properties and applications of dynamical systems with the Hilfer differ-

ential operator including classical and non-local conditions are found in [67] and

monograph Hilfer (2000)[64].

Systems having an abrupt change in the state at a fixed time moment or in a

small time interval are modeled into instantaneous impulsive evolution or not-

instantaneous impulsive evolution equation respectively. The qualitative properties

and applications of the integer order evolution systems with instantaneous impulses

are found in [135] and the same for the fractional systems are found in [75, 73]. In

some of the evolutionary processes, not-instantaneous impulses give better approxi-

mations instead of instantaneous impulses. The qualitative properties and applica-

tions of systems with non-instantaneous impulsive systems are found in [74, 97, 88].

This work considered non-instantaneous impulsive integro-differential fractional or-

der (0 < λ ≤ 1 and 0 ≤ µ ≤ 1) evolution system of Hilfer type

Dλ,µ
0+ x(t) = −Ax(t)

+ F
(
t, x(t),

∫ t

0

a(t, τ, x(τ))dτ

)
, t ∈

[
∪ [si, ti+1)

]
∪ [sp, T0]

x(t) = Gk(t, x(t)), t ∈ [t1, s1) ∪ [t2, s2) ∪ · · · ∪ [tp, sp),
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and discussed the existence of solutions with local condition I(1−λ)(1−µ)
0+ x(0) = x0

and non-local I(1−λ)(1−µ)
0+ [x(0)−h(x)] = u0 initial conditions over the finite interval

[0, T0] in a Banach space X. Dλ,µ differential operators of Hilfer type, A : X → X
is a linear part of the integrodifferential evolution equation, Kx =

∫ t
0
a(t, τ, x(τ))dτ

is nonlinear Volterra integral operator on X, F : [0, T0] × X × X → X is nonlinear

function and Gk : [0, T0] × X are set of non-linear functions applied in the interval

[tk, sk) for all i = 1, 2, · · · , p.

The outline of this chapter is as follows: Section-8.2 discusses the preliminaries to es-

tablish the results, section-8.3 established existence result for the non-instantaneous

fractional order Hilfer integro-differential evolution system with classical conditions

followed by a nonlocal condition in section-8.4. Finally, the conclusion is discussed

in section-8.5.

8.2 Preliminaries

This section is devoted to the definitions of integral Iλt0 and Hilfer fractional dif-

ferential operator Dλ,µ
t0+, Wright-type function Mλ and properties, concept operator

semi-group T (t), the operators like Kλ(t), Sλ,µ(t).

Definition 8.2.1. ([67]) For λ > 0, the fractional integral of order λ of a function

h(t) is defined by

Iλt0h(t) =
1

Γ(λ)

∫ t

t0

(t− τ)λ−1h(τ)dτ,

provided the integral on the right exists.

Definition 8.2.2. [67] The Hilfer fractional derivative of order λ, 0 < λ < 1 and

type µ, 0 ≤ µ ≤ 1 is defined by

Dλ,µ
t0+h(t) = Iµ(1−λ)t0+

d

dt
I(1−λ)(1−µ)
t0+ h(t),

provided the right value exists.

Definition 8.2.3. [67] For all θ ∈ C and λ > 0, the Wright-type function Mλ is

defined as:

Mλ(θ) =
∑
n∈N

(−θ)n−1

Γ(1− λn)(n− 1)!
(8.2.1)
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provided the sum on the right exists.

Wright-type function satisfies the following properties:

(1) Mλ(θ) > 0 for all λ > 0.

(2) For −1 < η <∞ the integral,
∫∞
0
θηMλ(θ)dθ =

Γ(1+η)
Γ(1+λη)

.

(3) For r > 0 the integral,
∫∞
0

λ
θλ+1 e

−rθMλ(θ
−λ)dθ = e−r

λ
for all λ > 0.

Let, T (t) be the family of semi-group generated by the linear operator −A and

define two linear operators Sλ(t) and Qλ(t) as:

Sλ(t) =

∫ ∞

0

Mλ(θ)T (tλθ)dθ (8.2.2)

Qλ(t) =

∫ ∞

0

λθMλ(θ)T (tλθ)dθ (8.2.3)

Following properties are satisfied by Sλ(t) and Qλ(t).

Lemma 8.2.1. [67] If T (t) be the family of C0-semigroup generated by the linear

operator −A for all t ∈ [0, T0] then the families of operators Sλ(t) and Qλ(t) defined

by (9.2.2) and (9.2.3) are:

(1) continuous and bounded for all t ∈ [0, T0].

(2) strongly continuous over the interval t ∈ (0, T0].

The operators Sλ(t) and Qλ(t) generate new linear operators Sλ,µ(t) and Kλ(t).

Sλ,µ(t) = Iµ(1−λ)0 Kλ(t) (8.2.4)

Kλ(t) = tλ−1Qλt (8.2.5)

These operators Sλ,µ(t) and Kλ(t) satisfies following properties:

Lemma 8.2.2. [67] If T (t) be the family of C0-semigroup generated by the linear

operator −A for all t ∈ [0, T0] then the families of operators Sλ,µ(t) and Kλ(t) defined

by (8.2.4) and (8.2.5) are:

(1) continuous and bounded for all t ∈ [0, T0].

(2) strongly continuous over the interval t ∈ (0, T0].

(3) ||Kλ(t)x|| ≤ tλ−1M
Γ(λ)

||x||

98



Vishant Shah 8.3. EQUATION WITH CLASSICAL CONDITIONS

(4) ||Sλ,µ(t)x|| ≤ M(µ(1−λ))tλ+µ−λµ−1

Γ(λ+µ−λµ−1)
||x||.

Where, M is the bound of T t over the interval [0, T0].

Theorem 8.2.1. (Banach Fixed Point Theorem [21]) Let E be closed subset of a

Banach Space (X, || · ||) and let T : E → E contraction then, T has unique fixed

point in E.

Theorem 8.2.2. (Krasnoselskii’s Fixed Point Theorem [21] ) Let E be closed convex

nonempty subset of a Banach Space (X, || · ||) and P and Q are two operators on E

satisfying:

(1) Pu+Qv ∈ E, whenever u, v ∈ E,

(2) P is contraction,

(3) Q is completely continuous

then, the equation Pu+Qu = u has a solution.

Operator Semigroup

8.3 Equation with Classical Conditions

This section establishes the existence results for fractional order (0 < λ ≤ 1 and

0 ≤ µ ≤ 1) non-instantaneous impulsive Hilfer integro-differential evolution systems

with classical conditions.

Dλ,µ
0+ x(t) = −Ax(t) + F

(
t, x(t),

∫ t

0

a(t, τ, x(τ))dτ

)
,

t ∈
[
∪ [si, ti+1)

]
∪ [sp, T0]

x(t) = Gk(t, x(t)), t ∈ [t1, s1) ∪ [t2, s2) ∪ · · · [tp, sp)

I(1−λ)(1−µ)
0+ x(0) = x0

(8.3.1)

over the interval [0, T0] in the Banach space X.
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Vishant Shah 8.3. EQUATION WITH CLASSICAL CONDITIONS

Definition 8.3.1. The function x(t) is called mild solution of the impulsive frac-

tional equation (8.3.1) over the interval [0, T0] if x(t) satisfies the integral equation

x(t) =



Sλ,µ(t)x0 +
∫ t

0

Kλ(t− τ)F(τ, x(τ), Kx(τ))dτ, t ∈ [0, t1)

Fk(t, x(t)), t ∈ [tk, sk)

Sλ,µ(t− sk)Gk(sk, x(sk)) +
∫ t

0

Kλ(t− τ)F(τ, x(τ), Kx(τ))dt,

t ∈ [sk, tk+1)

(8.3.2)

for all k.

The following theorem establishes the existence result for the Hilfer fractional integro-

differential evolution system with classical condition (8.3.1).

Theorem 8.3.1. If,

(A1) The evolution operator −A generates C0 semigroup S(t) for all t ∈ [0, T0].

(A2) The function F : [0, T0]×X×X → X is continuous with respect to t and there

exist a positive constants f ∗
1 and f ∗

2 such that ||F(t, u1, v1) − F(t, u2, v2)|| ≤
f ∗
1 ||u1 − u2|| + f ∗

2 ||v1 − v2|| for u1, v1, u2, v2 ∈ Br0 = {x ∈ X; ||x|| ≤ r0} for

some r0.

(A3) The operator K : [0, T0]× X → X is continuous and there exist a constant k∗

such that ||Ku−Kv|| ≤ k∗||u− v|| for u, v ∈ Br0.

(A4) The functions Gk : [tk, sk] × X are continuous and there exist a positive con-

stants 0 < g∗k < 1 such that ||Gk(t, u(t))− Gk(t, v(t))|| ≤ g∗k||u− v||.

are satisfied, then the fractional integro-differential system (8.3.1) with

not-instantaneous impulses has a unique mild solution.

Proof. Define the operator P on Banach space X by

Px(t) =


P1x(t), t ∈ [0, t1)

P2kx(t), t ∈ [tk, sk)

P3kx(t), t ∈ [sk, tk+1)
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where, the operators P1, P2k and P3k are defined as

P1x(t) = Sλ,µ(t)x0 +
∫ t

0

Kλ(t− τ)F(t, x(τ), Kx(τ))dτ, t ∈ [0, t1)

P2kx(t) = Gk(t, x(t)), t ∈ [tk, sk)

P3kx(t) = Sλ,µ(t− sk)Gk(sk, x(sk)) +
∫ t

0

Kλ(t− τ)F(τ, x(τ), Kx(τ))ds,

t ∈ [sk, tk+1)

for all k = 1, 2, · · · p.

In view of this definition of the operator P , the equation (8.3.2) has a unique solution

if and only if the operator equation x(t) = Px(t) has a unique solution. This is

possible if and only if each of x(t) = P1x(t), x(t) = P2kx(t) and x(t) = P3kx(t) has

unique solution over the interval [0, t1), [tk, sk) and [sk, tk+1) for all k = 1, 2, · · · , p
respectively.

For all t ∈ [0, t1) and u, v ∈ Br0 ,

||P(n)
1 u(t)− P(n)

1 v(t)|| ≤
∫ t

0

∫ τ1

0

· · ·
∫ τn−1

0

||Kλ(t− τ1)||||Kλ(τ1 − τ2)|| · · ·

||Kλ(τn−1 − s)||(f ∗
1 + k∗f ∗

2 )
n||u− v||

dsdτn−1 · · · dτ1

Assuming (A1), (A2) and (A3) and using lemma 8.2.2 and simplifying we get,

||P(n)
1 u(t)− P(n)

1 v(t)|| ≤
t1∫
0

t1∫
0

· · ·
t1∫
0

t
n(λ−1)
1 Mn(f ∗

1 + k∗f ∗
2 )
n

(Γ(λ))n

× ||u− v||dsdτn−1 · · · dτ1

≤ t
n(λ−1)
1 Mn(f ∗

1 + k∗f ∗
2 )
n

(Γ(λ))n(n− 1)!

∫ t1

0

(t1 − τ)n−1|u− v||dτ

≤ tnα1 Mn(f ∗
1 + f ∗

2k
∗)n

n!(Γ(α))n
||u− v||

≤ c∗||u− v||.

Taking limit n tending to ∞ over interval [0, t1), ||P(n)
1 u−P(n)

1 v| ≤ c∗||u−v|| → 0 for

fixed t1. Therefore, there exist at least one m such that P(m)
1 is contraction on Br0 .

Thus, by general Banach contraction theorem the operator equation x(t) = P1x(t)
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has unique solution over the interval [0, t1).

For all k = 1, 2, · · · , p, t ∈ [tk, sk) and u, v ∈ X and assuming (A4)

||P2ku(t)− P2kv(t)|| = ||Gk(t, u(t))− Gk(t, v(t))|| ≤ g∗k||u− v||.

Therefore, P2k is contraction, and by Banach fixed point theorem the operator

equation x(t) = P2kx(t) has a unique solution for the interval [tk, sk) for all k =

1, 2, · · · , p. This means for all k = 1, 2, · · · , p, x(t) = Gk(t, x(t)) has unique solution
for all t ∈ [tk, sk). Using Lipschitz continuity of Gk, the solution x is unique at sk

also.

For all k = 1, 2, · · · , p, t ∈ [sk, tk+1) and u, v ∈ Br0 ,

||P(n)
3k u(t)− P(n)

3k v(t)|| ≤
∫ t

sk

∫ τ1

sk

· · ·
∫ τn−1

sk

||Kλ(t− τ1)||||Kλ(τ1 − τ2)|| · · ·

||Kλ(τn−1 − s)||(f ∗
1 + k∗f ∗

2 )
ndsdτn−1 · · · dτ1

Assuming (A1), (A2) and (A3) and using lemma 8.2.2 and simplifying we get,

||F (n)
3k u(t)−F (n)

3k v(t)|| ≤
tk+1∫
sk

tk+1∫
sk

· · ·
tk+1∫
sk

(tk+1 − sk)
n(λ−1)Mn(f ∗

1 + k∗f ∗
2 )
n

(Γ(λ))n

||u− v||dsdτn−1 · · · dτ1

||P(n)
3k u(t)− P(n)

3k v(t)|| ≤
(tk+1 − sk)

n(λ−1)Mn(f ∗
1 + f ∗

2k
∗)n

(n− 1)!(Γ(λ))n∫ tk+1

sk

(tk+1 − s)n−1ds||u− v||

≤ (tk+1 − sk)
nλMn(f ∗

1 + f ∗
2k

∗)n

n!(Γ(λ))n
||u− v||

≤ c∗||u− v||.

Over interval [sk, tk+1) and taking n → ∞, ||P(n)
3k u − P(n)

3k v| ≤ c∗||u − v|| → 0 for

fixed sub-interval [sk, tk+1) for all k = 1, 2, · · · , p. Thus, there exist at least one m

such that P(m)
3k is contraction on Br0 . Thus by general Banach contraction theorem

the operator equation x(t) = P3kx(t) has unique solution over the interval [sk, tk+1)

for all k = 1, 2, · · · , p.
Hence, the operator equation x(t) = P(t) has a unique solution over the interval

[0, T0] which is nothing but the mild solution of the equation (6.3.1).
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Example 8.3.1. Consider the integro-differential Hilfer system of order (0 < λ ≤ 1

and 0 ≤ µ ≤ 1):

Dλ,µ
t u(t, ψ) = uψ,ψ(t, ψ) + u(t, ψ)uψ(t, ψ) +

∫ t

0

e−u(τ,ψ)dτ,

t ∈ [0, 1/3) ∪ [2/3, 1]

u(t, ψ) =
u(t, ψ)

2(1 + u2(t, ψ))
, t ∈ [1/3, 2/3)

(8.3.3)

over the interval [0, 1] with initial condition u(0, ψ) = u0(ψ) and boundary condition

u(t, 0) = u(t, 1) = 0.

The equation (8.3.3) can be reformulated as fractional order abstract equation in

X = L2([0, 1],R) as:

Dλ,µz(t) = −Az(t) + F(t, z(t), Kz(t)), t ∈ [0, 1/3) ∪ [2/3, 1]

z(t) = G(t, z(t)) t ∈ [1/3, 2/3)
(8.3.4)

over the interval [0, 1] by defining z(t) = u(t, ·), operator −Au = u′′ (second order

derivative with respect to ψ). The functions F and G over respected domains are as

F(t, z(t), Kz(t)) = (z2(tt))′/2 +
∫ t
0
e−z(τ)dτ and G(t, z(t)) = z(t)

2(1+z2(t))
respectively.

(1) The linear operator A over the domain D(A) =
{
u ∈ X;u′′ exist and continu-

ous with u(0) = u(1) = 0
}
is self-adjoint, compact, and re-solvent. Therefore

A is the infinitesimal generator of C0 semi- group T (t) over the interval [0, 1]

given by

T (t)u =
∞∑
n=1

exp(−n2π2t)⟨u, ϕn⟩ϕn, (8.3.5)

where ϕn(ψ) =
√
2sin(nπψ) for all n = 1, 2, · · · is the orthogonal basis for the

space X.
(2) The function F : [0, 1] × [0, 1] × X → X is continuous with respect to t and

differentiable with respect to z for all z and hence K is Lipschitz continu-

ous with respect to z. This means there exist positive constant k∗ such that

||K(t, z1)−K(t, z2)|| ≤ k∗||z1 − z2||.
(3) The function F : [0, 1] × X × X → X is continuous with respect to t and is

differential with respect to argument z and Kz. Therefore there exist positive

constants f ∗
1 and f ∗

2 such that ||F(t, z1, Kz1)−F(t, z2, Kz2)|| ≤ f ∗
1 ||z1− z2||+
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f ∗
2 ||Kz1 −Kz2||, z1, z2 ∈ Br0 for some r0.

(4) The impulse F is continuous with respect to t and Lipchitz continuous with

respect to z with Lipschitz constant g∗ = 1/2 < 1.

Thus, by theorem-8.3.1 the equation (8.3.4) has unique solution over [0, 1]. Hence,

the equation (8.3.3) has a unique solution over the interval [0, 1].

8.4 Equation with Nonlocal Conditions

This section establishes the existence results for fractional order (0 < λ ≤ 1 and

0 ≤ µ ≤ 1) non-instantaneous impulsive Hilfer integro-differential evolution systems

with non-local initial conditions.

Dλ,µ
0+ x(t) = −Ax(t) + F

(
t, x(t),

∫ t

0

a(t, τ, x(τ))dτ

)
,

t ∈
[
∪ [si, ti+1)

]
∪ [sp, T0]

x(t) = Gk(t, x(t)), t ∈ [t1, s1) ∪ [t2, s2) ∪ · · · [tp, sp)

x(0) = x0 + h(x)

(8.4.1)

in the Banach space X.

Definition 8.4.1. The function x(t) is called mild solution of the impulsive frac-

tional equation (8.4.1) over the interval if x(t) satisfies the integral equation

x(t) =



Sλ,µ(t)[x0 + h(x)] +

∫ t

0

Kλ(t− τ)F(τ, x(τ), Kx(τ))dτ, t ∈ [0, t1)

Gk(t, x(t)), t ∈ [tk, sk)

Sλ,µ(t− sk)Gk(sk, x(sk)) +
∫ t

0

Kλ(t− τ)F(τ, x(τ), Kx(τ))dt,

t ∈ [sk, tk+1)

(8.4.2)

The following theorem establishes the existence of the solution for the non-local non-

instantaneous fractional integro-differential evolution system (8.4.1) of Hilfer type

over the interval [0, T0].
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Theorem 8.4.1. If,

(B1) The evolution operator −A generates C0 semigroup S(t) for all t ∈ [0, T0].

(B2) The function F(t, ·, ·) is continuous and F(·, u, v) is measurable on [0, T ] ×
X× X. Also, there exist γ ∈ (0, λ) with mf ∈ L

1
γ ([0, T0],R) such that

|F(t, u, v)| ≤ mf (t) for all u, v ∈ X.
(B3) The operator K : [0, T0]× X → X is continuous and there exist a constant k∗

such that

||Ku−Kv|| ≤ k∗||u− v||.
(B4) The operator h : X → X is Lipschitz continuous with respect to u ∈ X with

Lipschitz constant 0 < h∗ ≤ 1.

(B5) The functions Gk : [tk, sk] × X are continuous and there exist a positive con-

stants 0 < g∗k < 1 such that

||Gk(t, u(t))− Gk(t, v(t))|| ≤ g∗k||u− v||.

are satisfied then the non-local non-instantaneous fractional order integro-differential

evolution system (8.4.2) has a mild solution provided M∗
0h

∗ < 1 and M∗
0 g

∗ < 1.

Proof. Using the lemma-9.2.2 and (B4),

|Sλ,µ(t)(x0 + h(x))| ≤ M(µ(1− λ))tλ+µ−λµ−1

Γ(λ+ µ− λµ− 1)
(|x0|+ h∗||x||+ |h(0)|). (8.4.3)

for all x ∈ Bk = {u ∈ X : ||x|| ≤ k} for any positive constant k and t ∈ [0, T0]. Using

(B2), (t− s)λ−1 ∈ L
1

1−γ [0, t) for all t ∈ [0, T0] and γ ∈ (0, λ). Taking M1 = ||mf ||
L

1
γ

and using Holder’s inequality and assuming (B2), for t ∈ [0, T0]∫ t

0

Kλ(t− τ)F(τ, u(τ), Ku(τ))|ds ≤ M

Γ(λ)

(∫ t

0

(t− τ)
λ−1
1−γ ds

)1−γ

M1

≤ MM1(γ − 1)

Γ(λ)(λ− γ)
tλ−γ. (8.4.4)

For t ∈ [0, t1) and for positive r consider F1 and F2 on Br as,

F1x(t) =Sλ,µ(t)(x0 + h(x))

F2x(t) =

∫ t

0

Kλ(t− τ)F(τ, x(τ), Kx(τ))dτ

105



Vishant Shah 8.4. EQUATION WITH NONLOCAL CONDITIONS

The function x(t) is a mild solution of the semi-linear fractional integro-differential

equation if and only if the operator equation x = F1x+F2x has a solution for u ∈ Br

for some r. Therefore the existence of a mild solution of (8.4.1) over the interval

[0, t1) is equivalent to determining a positive constant r0, such that F1 + F2 has a

fixed point on Br0 .

Step:1 ||F1u+ F2v|| ≤ r0 for some positive r0.

Let u, v ∈ Br0 where,

r0 =M∗
0

|x0|+ |h(z)|
1−M∗

0h
∗ +

M∗
1

(1−M∗
0h

∗)
t
(λ−γ)
1 ,

M∗
0 =

M(µ(1− λ))tλ+µ−λµ−1
1

Γ(λ+ µ− λµ− 1)
,

and

M∗
1 =

MM1(γ − 1)

Γ(λ)(λ− µ)

and considering

|F1u(t) + F2v(t)|

≤
∣∣∣∣Sλ,µ(t)(x0 + h(u))

∣∣∣∣+ ∣∣∣∣ ∫ t

0

Kλ(t− τ)F(τ, u(τ), Ku(τ))dτ

∣∣∣∣
≤ M(µ(1− λ))tλ+µ−λµ−1

Γ(λ+ µ− λµ− 1)
(|x0|+ h∗||u||+ |h(0)|)

+
MM1(γ − 1)

Γ(λ)(λ− γ)
tλ−γ

(using inequalities (8.4.3) and (8.4.4))

≤ r0 (since, M∗
0h

∗ < 1).

Therefore, ||F1u+ F2v|| ≤ r0 for every pair u, v ∈ Br0 .

Step: 2 To show F1 is contraction on Br0 , consider u, v ∈ Br0 and t ∈ [0, t1),

|F1u(t)− F1v(t)| ≤
∣∣∣∣Sλ,µ(t)(x0 + h(u))− Sλ,µ(t)(x0 + h(v))

∣∣∣∣
≤ M(µ(1− λ))tλ+µ−λµ−1

Γ(λ+ µ− λµ− 1)
h∗||u− v|| ≤M∗

0h
∗||u− v||

and M∗
0h

∗ < 1 which implies F1 is contraction.
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Step: 3 To show F2 is completely continuous operator on Br0 , consider the sequence

{un} in Br0 converging to u ∈ Br0 then,

|F2un(t)− F2u(t)|

≤
∫ t

0

|Kλ(t− τ)||F(τ, un(τ), Kun(τ))dτ −F(τ, u(τ), Ku(τ))dτ |

≤ C∗
∫ t

0

||F(τ, un(τ), Kun(τ))−F(τ, u(τ), Ku(τ))||dτ,

where, c∗ = M(µ(1−λ))tλ+µ−λµ−1

Γ(λ+µ−λµ−1)
and using continuity of F with respect to the second

and third argument ||F2un − F2u|| → 0 as n→ ∞. So, F2 is continuous.

Now to show {F2u, u ∈ Br0} is relatively compact it is sufficient to show

(1) The family of functions {F2u, u ∈ Br0} is uniformly bounded and equicontin-

uous.

(2) For any t ∈ [0, t1), {F2u(t), u ∈ Br0} is relatively compact in X.

Clearly, for any u ∈ Br0 , ||F2u|| ≤ r0, this means that the family {F2u, u ∈ Br0} is

uniformly bounded in X.
For any u ∈ Br0 and 0 ≤ t1 < t2 < t1,

|F2u(t2)− F2(t1)|

=

∣∣∣∣ ∫ t2

0

Kλ(t2 − τ)F(τ, u(τ), Ku(τ))dτ −
∫ t1

0

Kλ(t1 − τ)

F(τ, u(τ), Ku(τ))dτ

∣∣∣∣
=

∣∣∣∣ ∫ t2

t1

Kλ(t2 − τ)F(τ, u(τ), Ku(τ))dτ +

∫ t1

0

Kλ(t2 − τ)

F(τ, u(τ), Ku(τ))dτ −
∫ t1

0

Kλ(t1 − τ)F(τ, u(τ), Ku(τ))dτ

∣∣∣∣
≤

∣∣∣∣ ∫ t2

t1

Kλ(t2 − τ)F(τ, u(τ), Ku(τ))dτ

∣∣∣∣+ ∣∣∣∣ ∫ t1

0

[
Kλ(t2 − τ)−

Kλ(t1 − τ)
]
F(τ, u(τ), Ku(τ))dτ

∣∣∣∣
≤ I1 + I2,
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where,

I1 =

∣∣∣∣ ∫ t2

t1

Kλ(t2 − τ)F(τ, u(τ), Ku(τ))dτ

∣∣∣∣
≤ MM1(γ − 1)

Γ(λ)(λ− γ)
(t2 − t1)

λ−γ

(Applying inequality (8.4.4) over interval [t1, t2]),

this implies the integral I1 → 0 as t1 → t2. Similarly,

I2 =

∣∣∣∣ ∫ t1

0

[
Kλ(t2 − τ)−Kλ(t1 − τ)

]
F(τ, u(τ), Ku(τ))dτ

∣∣∣∣
=

∣∣∣∣ ∫ t1

0

[
(t2 − τ)λ−1Qλ(t2 − τ)− (t1 − τ)λ−1Qλ(t1 − τ)

]
F(τ, u(τ), Ku(τ))dτ

∣∣∣∣
≤

∣∣∣∣ ∫ t1

0

(t2 − τ)λ−1
[
Qλ(t2 − τ)−Qλ(t1 − τ)

]
F(τ, u(τ), Ku(τ))dτ

∣∣∣∣
+

∣∣∣∣ ∫ t1

0

[
(t2 − τ)λ−1 − (t1 − τ)λ−1

]
Qλ(t1 − τ)F(τ, u(τ), Ku(τ))dτ

∣∣∣∣
Assuming the (B1),(B2), (B3) and Holder inequality the integral∣∣∣∣ ∫ t1

0

(t2 − τ)λ−1
[
Qλ(t2 − τ)−Qλ(t1 − τ)

]
F(τ, u(τ), Ku(τ))dτ

∣∣∣∣
and the integral∣∣∣∣ ∫ t1

0

[
(t2 − τ)λ−1 − (t1 − τ)λ−1

]
Qλ(t1 − τ)F(τ, u(τ), Ku(τ))dτ

∣∣∣∣
also vanishes as t1 → t2. The vanishing of both the integral lead to the vanishing

of I2. Thus, |F2u(τ2) − F2(τ1)| tends to zero as t1 → t2 for independent choice of

u ∈ Br0 . Hence, the family {F2u, u ∈ Br0} is equicontinuous.

Define the family X(t) = {F2u(t), u ∈ Br0} for all t ∈ [0, t1). Clearly, X(0) is

relatively compact. Let, t0 ∈ [0, t1) be fixed and for each ϵ ∈ [0, t1), define an

operator Fϵ on Br0 by formula

Fϵu(t) =

∫ t−ϵ

0

Kλ(t− τ)F(τ, u(τ), Ku(τ))dτ.
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To show that the family X(t) for all t ∈ [0, t1) is relatively compact consider,

|F2u(t)− Fϵu(t)|

=
∣∣ ∫ t

0

Kλ(t− τ)F(τ, u(τ), Ku(τ))dτ

−
∫ t−ϵ

0

Kλ(t− τ)F(τ, u(τ), Ku(τ))dτ

∣∣∣∣
≤

∫ t

ϵ

|Kλ(t− τ)f(τ, u(τ), Ku(τ))dτ |

≤ MM1(γ − 1)

Γ(λ)(λ− γ)
(t− ϵ)λ−γ (Applying inequality (8.4.4)).

Thus, X(t) is relatively compact, and hence, by Ascoli-Arzela theorem the operator

F2 is completely continuous on Br0 . Using Krasnoselskii’s fixed point theorem F1+F2

has a fixed point on Br0 which is a mild solution of the equation (8.4.1) over the

interval [0, t1).

On the interval [tk, sk) for all k = 1, 2, · · · , p and fixed positive r0 define the operators

F1 and F2 on Br0 as,

F1u(t) =Gk(t, u(t))

F2u(t) =0

assuming (B5) using Krasnoselskii’s fixed point theorem, u(t) is the mild solution

of the non-instantaneous Hilfer integro-differential fractional evolution system over

the interval [tk, sk).

On the interval [sk, tk+1) for all k = 1, 2, · · · , p and for positive r we define F1 and

F2 on Br as,

F1x(t) =Sλ,µ(t− sk)Gk(sk, x(sk))

F2x(t) =

∫ t

0

Kλ(t− τ)F(τ, x(τ), Kx(τ))dt

then, the function u(t) is the mild solution of Hilfer fractional integro-differential

evolution system over the interval [sk, tk+1) if and only if the operator equation

x = F1x+F2x has a solution for x ∈ Br for some r. This is equivalent to the a mild

solution of (8.4.1) over the interval [sk, tk+1).

Select,

r0 =M∗
0

|Gk(·, z)|
1−M∗

0 g
∗
k

+
M∗

1

(1−M∗
0 g

∗
k)
(tk+1 − sk)

(λ−γ)
1 ,
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M∗
0 =

M(µ(1− λ))(tk+1 − sk)
λ+µ−λµ−1
1

Γ(λ+ µ− λµ− 1)
,

, and

M∗
1 =

MM1(γ − 1)

Γ(λ)(λ− µ)

and applying similar arguments as applied for interval [0, t1) and using Krasnosel-

skii’s fixed point theorem F1 + F2 has a fixed point on Br0 which is nothing but

the mild solution of the Hilfer fractional integro-differential evolution system (8.4.1)

over the interval [sk, tk+1). This completes the proof of the theorem.

Example 8.4.1. Consider, the Hilfer fractional partial integro-differential evolution

system with nonlocal conditions:

D
1/2,1
t u(t, ψ) = uψ,ψ(t, ψ) + u(t, ψ)uψ(t, ψ)

+
1

50

∫ t

0

e−u(τ,ψ)dτ, t ∈ [0, 1/3) ∪ [2/3, 1]

u(t, ψ) =
u(t, ψ)

10(1 + u2(t, ψ))
, t ∈ [1/3, 2/3).

(8.4.5)

over the interval [0, 1] with initial condition u(0, ψ) = u0(ψ) +
∑2

i=1
1
3i
u(1/i, ψ) and

boundary condition u(t, 0) = u(t, 1) = 0.

The equation (8.4.5) can be reformulated as fractional order abstract equation in

X = L2([0, 1],R) as:

D1/2,1z(t) = −Az(t) + F(t, z(t), Kz(t)), t ∈ [0, 1/3) ∪ [2/3, 1]

z(t) = G(t, z(t)) t ∈ [1/3, 2/3)
(8.4.6)

over the interval [0, 1] by defining z(t) = u(t, ·), operator −Au = u′′ (second order

derivative with respect to t). The functions f and g over respected domains are

defined as F(t, z(t), Kz(t)) = 1
50

∫ t
0
e−z(τ)dτ and g(t, z(t)) = z(t)

10(1+z2(t))
respectively.

The equation (8.4.6) satisfies the conditions (B1-B5) of the hypothesis with M∗
0h

∗ <

1 and M∗
0 g

∗ < 1. Hence the equation (8.4.6) has a mild solution over the interval

[0, 1].
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8.5 Conclusion

This chapter established the results concerning the mild solutions of non-instantaneous

impulsive fractional integro-differential evolution system on the Banach space X by

considering classical as well as non-local conditions. These results are obtained using

the concept of non-linear functional analysis and fixed point theorems. Using these

results one can obtain a mild solution for the non-instantaneous impulsive Hilfer

fractional integro-differential system.
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