Chapter 5

Convergence and integrability of
rational and double rational
trigonometric series

Complex numbers and sequences of bounded variation are crucial tools in analysing
the convergence of trigonometric series, simplifying calculations and offering el-
egant representations. They provide deeper insights into function behaviour,
making them essential in mathematical analysis. Bounded variation sequences
play a crucial role in studying functions’ convergence, continuity, and differentia-
bility, particularly in the context of Fourier analysis. In the Fourier series, these
sequences are vital for approximating functions, ensuring accuracy in represen-
tations, and facilitating various operations. Additionally, sequences of bounded
variation of higher order further contribute to the analysis and approximation of

functions, especially those with oscillatory behaviour.

In 1954, Ul'yanov [64] obtained significant results for sine and cosine series
where f(z) =377, a,cosnz and g(x) = > ., a, sinnz were considered. It was
shown that if {a, }22 ; is a null sequence of bounded variation then f, g € L?[0,27)
for any 0 < p < 1. In 1984, Stanojevic [58] considered the complex trigonometric
series with its coeflicients being a null sequence of generalized bounded variation,
specifically bounded variation of order m, m > 1 and obtained the results related
to convergence and integrability of such trigonometric series. Later, in 2004,
Kaur et al. [32] extended these results for double trigonometric series. It is worth

noting that if the coefficients of the trigonometric series are Fourier coefficients of
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some functions, then the trigonometric series becomes the Fourier series of that

function.

We have derived inspiration to investigate rational trigonometric series
with coefficients of bounded variation sequences, recognizing their significance
in the broader context of mathematical analysis. The importance of bounded
variation sequences in studying convergence and integrability of functions, as
highlighted in the preceding text, has motivated our interest in exploring their
application to rational trigonometric series. This endeavour aims to enhance
our understanding of the behaviour of functions and contribute to advancing

mathematical analysis.

The main focus of this chapter is to study analogous results by replacing

trigonometric series with rational trigonometric series. Here, we are considering

00
n=-—o00’

the following rational orthogonal system {¢, (¢™®) where

V1 — r2e® ( e —

1 —rei® 1 —rei®

do(e™) =1, ¢p(c™") =

) () = (@), (5.1)

n €N, z € Tand r € [0,1). Clearly, (5.1) is obtained from the rational orthogo-
nal system by putting a = r, Vn € N. Note that if » = 0, then the above rational
orthogonal system {¢,(¢®*)}>°___ reduces to the exponential system {e"*}>°

The following inequality can be easily deduced,

; 1
on(e)] < Tt Vi € 2. 52)

5.1 Rational trigonometric series

The rational trigonometric series is defined as

> c(n) gule™), (5.3)

where {c(n)}5°, is a sequence of complex numbers and = € T := [0, 27).

Theorem 5.1.1. If for some m € N, a complex sequence {c(n)}nez € BV™ then

the rational trigonometric series (5.3)
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(i) converges pointwise to some function f(x) for every z € T \ {0}.

(ii) converges in LP(T)-metric to f for any 0 <p < +.

Proof. Part (i): Let w :=w(z) =1 — & where z € T \ {0}.
Note that for n € Z\ {0,1} and = € T \ {0},

W(@)n(€”) = Pn(€™) = Pn-1(e™). (5.4)

Also, we have
sin (2 w(x
9 1
Let N be positive integer such that N > 1 and Q ={n € Z\{0,1} : =N <n <
N}. Also, let partial sum of series (5.3) be Sy(z) := S0 ¢(n)¢n(e™). Thus,
by (5.4), we get

W™ Z c(n)oy(e

<1, z€T. (5.5)

neqQ
1 m—1
Z A™c ) + Z W™ 1 N (O)¢ (ezz)
n=—N t=0
1 N
o W™ 1 EAL ( ¢ N 1 mc Z
=0 n—2
m—1 m—1
+ ) WTHEAT(N 4 1oy (e®) = Y W™ EAY(2)gy (e). (5.6)
=0 =0

Therefore, for x € T \ {0},

SN(x)

t=0 n
m—1 m—1

+ W™ 1 tAt ( )CbN( ) _ w™m 1—tAtC( )¢ (6“))
t=0 t=0
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Now, in view of (5.2),(5.5),(5.7) and by definition of BV™, we get that the ra-

tional orthogonal series (5.3) converges pointwise to some f(x) for all z € T\ {0}.

Part (ii): For x € T \ {0} and a positive integer N such that N > 1, we

have,
m—1
Fa) = Su(@) = = [ 30 Ame(m)on(e) + 3 0 A (N )o_n-a(e¥)
In|>N+1 t=0
m—1
— Z wm—l—tAtc(N 4 l)qu(em)) )
t=0

Let 0 < p < . Then, by (5.2) and (5.5), we get

|f<x>—sN<m>|ps(L>p S jarem)] +2n 3 A=)

(1 =)™ In|>N+1

m—1 p
+2™ ) | Ale(N + 1)1) .

t=0

Since mp < 1, by (5.5)

dx < 1+ mp/ dz <O
Tlw™ T\ 2 T sin™P(Z) = T

where (), is some absolute constant.
Thus by definition of BV™ | we get

(/T f(z) — sN(x)yp>1/p S 0as N — oo.

Hence, we get the result. O

Remark 17. If » = 0 in Theorem 5.1.1, then we get the analogous result for clas-

sical trigonometric series obtained by Stanojevic [58], as the rational orthogonal

inT ) 00
n=—oc"

system {¢,(e)}>°__ reduces to the exponential system {e Similarly,

for r = 0 and m = 1, we get the analogous result by Ul'yanov[64].
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5.2 Double rational trigonometric series

The double rational trigonometric series is defined as

DY i o)), (5.8)

j=—00 k=—o00

where {c(j,k) : —oo < j,k < oo} is a double sequence of complex numbers and
(z,y) € T2
The rectangular partial sums of double rational trigonometric series (5.8) are
given by

S(w,y) =D Y cli, k)g;(e™)dn(e). (5.9)

I<T [kI<K

Theorem 5.2.1. If for some m € N, a double complex sequence {c(j. k)}jrez2 €
BVy', then the double rational trigonometric series (5.8)
(i) converges reqularly to some function f(z,y) for every (z,y) € (T \ {0})>.
(ii) converges in LP(T?)-metric to [ for any 0 < p < -= when min(j, k) — co.

Proof. Part (i): Let w(z) =1 — mfer where z € T\ {0}, J and K be positive
integers greater than 1, R = {j € Z\ {0,1} : —J < j < J} and Q = {k €
Z\{0,1} : =K <k < K}. Also, let x,y € T\ {0}.

Thus, by (5.4) and in view of (5.6) and (cf. [32, Lemma 2.1]), for a €
{0, 1},we get

w(z)™ Z c(j, a)p;(e™)

jER
m—1
= ZAmoc (j,a)¢; (™) + Zw " Ae(0, a) g (€)
JER t=
- AtOC(_Jy G)¢—J—1(em) + AtOC('] +1, a)¢J(€ix) - AtOC(27 a)¢1 (eix)]
= Aj,m

wly)™ S ela, K)o (e)

keQ
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m—1
—ZAOmca E)or(e™) —l—Zw )" Agge(a, 0)p_1 (")

keQ t=0
— Agicla — K)o_g_1(e¥) + Agc(a, K + 1)dr () — Agic(a, 2)¢r (e%)]
= Bava

and

W™D g k)ss(e)n(e™)

JER kEQ

=D Al oy () e(e)
JER kEQ

m—1

DD )" (Al K+ 1)d5(e)0r(€) + Ame(f; 0)95(e)61 ()]

- Z w(y)m—l—t [Ath(j, 2)¢j (eix)¢1 (eiy) + Amtc(j> _K)qu(eix)gb—l(—l(eiy)]

(S

(@)™ [Asme(J + 1, k)b () dr(e€”) + Dsnc(0, k) b1 (e)Pr(e™)]

(S

(z)m1s [Asmc(2, E)p1(e™)pr(e”) + Agme(—J, k)qS_J_l(ei‘”)(;Sk(eiy)]

+
&

()" wy)™ 7 [ Al + 1K+ 1Dy (e)or(e?)

B7(e™)p_1(eY) + Ayc(0, K + 1)p_1 (™) px (e)
e)p1(€”) = Aye(2, K + 1)¢1(e) i (e7)
,0)o1(e) 1 () = Age(=J, K+ 1)p— 51 () prc (e")
(—J,0)¢—s1(e)p-1(e") = Age(J +1,2)0 (™) p1 (")
sc(J + 1, =K)h(e")p-r-1(e") — Dyyc(0,2)p-1 ()P (e")
( )o-1(e)p-re1(€") + Dgye(2,2) (™) 1 (e™)
+ Dgc(2, = K)1 () -r-1(e™) + Dgye(— T, 2)p— g1 ()P (e")
+ Agc(—J, = K)p_ s 1 () o1 ()]
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Now,

Sy (z,y) =c(0,0) 4+ c(0, 1) (e®) + ¢(1,0)h1 (™) + (1, 1)y () (%)
Ajo+ o1(e™)Aj, n Bok + ¢1(e") By " Cix

. (5.10
o) S e O
Note that, in view of definition of BVY", we get
m—1
Z Z |A (g, K+ 1)] < Cp, sup Z |Aoc(d, k)| — 0 as min(J, K) — oo
JER 1=0 R i<a
m—1m-—1
D> Awe(J+1L K+1) < Cpy sup (4, k)| — 0 as min(J, K) — oo,
s=0 t=0 [71=>J+1, [k|>K+1
and
m—1m—1
|AstC 0 0 | < Cm,
s=0 t=0

where U ={k € Z: K+ 1<k < K+ m} and (, is an absolute constant not
necessarily the same at each occurrence. Similarly, we can solve for other sums
of C;; and (5.10).

Thus, in view of (5.2),(5.5),(5.10), in the view of [12, Theorem 2.1] and
by definition of BVY', we get that the double rational orthogonal series (5.8)
converges [(x,y) as min(j, k) — oo for all (z,y) € (T \ {0})2. Also for (z,y) €
(T'\ {0})2, by following similar steps as in Theorem 5.1.1, in the view of [12, The-
orem 2.1] and by (5.2), the row series Y22 (4, k)¢; (") ¢x(e”) converges for
each fixed value of k and the column series Y ;= _ (7, k)@;(e")ér(e™) converges
for each fixed value of j. Thus, we get that the double rational orthogonal series
(5.8) converges regularly to f(z,y) for all (z,y) € (T \ {0})%

Part (ii): For 2,y € T\ {0} and positive integers J and K such that
J, K > 1, we have,

f(!l?, y) - SJK(‘% y)
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|k|>K+1

m—1

t=0

w(@)mw(y)™

w(@)™ T = Ape(=J,0)0_ 51 () + Asoc(J + 1,0)p, (™)}

1 ¢1(
w(l‘)m w(w )

Z Aoc(d, 1), (e )

lj1=J+1

Amoc(4, 0);( “)]

€

()" = Droe( =, Do ya(€) + Al + 1, 1>¢J<eﬂ>}]
wW(y)™ T = Agie(0, = K)p_ g1 () + Ngrc(0, K + 1)dx (™)}

1 ¢1(
y)m uJ(@/)

> Dowe(l k)on(e”)

|k|>K+1

Agmc(0, k)gbk(e”’)] ol

w(y)" AL, = K)ok () + Dgre(1, K + 1)¢K(ciy)}]

o [Z PO LI CRLICY

l71>J+1 [k|>K+1

w(y)" " T Amic(g, K+ 1)¢5(e) o ()
D W) T Ae(d, 0); (€)1 (e")
D W) T Ae(f, 2)5 () ()
w(y)" T A e, — K)o () p-re 1 (")

3 (@)™ A (S + 1K) () i)

Z Z W)™ A (0, K)oy () pr(e™)

w(@)" T T A e(2, k) dr (") di(e™)
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m—1
+ > Zw YIS A (=, k)b g1 (€7 i (€%)
[k|[>K+1 s=0

m—1m—1

Z Zw PG (y) T [Age(J 4+ 1L, K+ 1)¢,(e7)gxc (€)

s=0 t=

+ Dc(0, K+ Dpo1(e)dre () — Age(2, K + 1)hr () o ()

= Dge(—J, K+ 1)p 5 1()ox (V) = Age(=1,0)¢ 51 ()1 (")
— Age(d +1,2)p5(e7)dr (") — Age(d + 1, —K)ds(e) -1 (e")
= Dye(0, =K1 (e)p- g1 (e") + Age(2, =K )1 (€)1 (e")

+ Age(—J.2)d- 1 (€)1 (e) + Agpe(—J, —K)p—y—1(e)d—r—1 (€")

+ Agc(J +1,0)0,(e")p_1 (V)]

Let 0 < p < --. Hence, mp < 1 and therefore by (5.5)

// dzx dy 1+7“ // dxdy <0
T2 ]w(x)w(y)]mi” - 2 SIn™P(£)sin™(4) — T

where C,,,,;, is some absolute constant.
Thus by (5.2), (5.5), and definition of BVy' , we get

. 1/p
(// |f(x,y)—SJK(x,y)|p> —0as J, K — oo.
’]1‘2

Hence, we get the result. O

Remark 18. Note that if we take r = 0 in Theorem 5.2.1, we get results for
classical double trigonometric series. Results for double trigonometric series for
bounded variation of some order m and order 1 can be found in [32] and [40],

respectively.
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