Chapter 1

Introduction

The Fourier series of a 27 periodic and integrable function f is defined as

o

f@)~ " elf)em, (1.1)

n=-—oo

where ¢, (f) is the n'* Fourier coefficient of f, given by

2
enl[) = % /0 (@)= da. (1.2)
The study of the Fourier series traces its origin to the early 19th century and
has been an ever-growing topic since then due to its theoretical and practical
applications. The significant result called Riemann Lebesgue Lemma [20, Lemma
2.3.8, p. 36], laid some groundwork for determining the link between the Fourier
coefficients with the behaviour of the function being studied and it can be stated

as follows:

If f e LY([0,27]), n € Z then ¢,(f) — 0 as |n| = oco.

It is observed that the Riemann-Lebesgue Lemma does not provide a definite
rate at which the Fourier coefficients tend to zero; in fact, the Fourier coefficients
can tend to zero as slowly as desired. Therefore, some mathematicians started
studying properties of Fourier coefficients for various subclasses of L'(T), T =
[0, 27).



1.1 Fourier coefficients’ properties of one vari-
able functions of generalized bounded vari-

ations

One specific subclass of L!([0,27]), that was explored for the study of the mag-
nitude order of Fourier coefficients is Lip(j3, p)([0, 27]) class [79, p. 45].

Definition 1.1.1. Let [ € LP(T),p > 1 and j € (0, 1], then [ € Lip(p; 3)(T), if
w?(f;v) = O(+%) as v — 0, where

w(P)(f;v) — Oigg Th(f) — f“pv

1

To(f)(@) = f(z+h), Yh,o € T and ||f]|, = (% s |f(,q:)]1’) P

If p = oo then Lip(p; 8)(T) reduces to Lip(3)(T).

The result [79, Theorem 4.7, p.46] concerning the order of Fourier coeffi-

cients for functions in Lip(3, p)([0,27]) class was shown as follows:

Theorem A. If f € Lip(3,p)(]0,27]) and n € Z\ {0} then

One another subclass of L'([0,27]) called a class of functions of bounded
variations BV ([0, 27]) was first introduced by Jordan [30] in 1881. The Jordan
class of bounded variation is quite useful not only in the study of the order of
Fourier coefficients but also in the study of other aspects, such as pointwise and
absolute convergence of Fourier series. Since the class is Banach algebra with
respect to the pointwise operations and suitable variation norm, it also finds the-
oretical applications in functional analysis. Mathematicians’ pursuit of elegance
and/or generality in addressing specific problems has resulted in fascinating gen-
eralizations of the concept of bounded variation. This has led to the emergence

of novel categories of functions with generalized bounded variations.

In 1924, Wiener [77] introduced the class of functions of bounded variation

of order p, p > 1, written as BV?([0,2x]). Later on, influenced by the study of
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problems of the convergence of Fourier series, Waterman [75] gave the class of
functions of A— bounded variation, written as ABV ([0, 27]). Subsequently, in
1980, Shiba [57] gave the following class of functions of p — A—bounded variation
by assimilating ideas from Wiener’s bounded variation of order p and Waterman’s

A— bounded variation.

Definition 1.1.2. Let A = {A,}2%, be a non decreasing sequence of positive
numbers such that > ﬁ diverges and p be a real number such that 1 < p < oo
then a real-valued function [ is said to be of p — A— bounded variation on [a, ]

(Le. f € ABV?([a,b])) if

Vi, (f:[a,8]) = sup Vi, ({1}, f, la, b]) < oo,

{1}
where 1
_ (NPT
‘/Ap ({[n}7f7 [(l, b]) - (Z )\k < 00,
k=1
for every sequence of non-overlapping intervals Iy := [ay, b;] which is contained

in [a.b] and f(Ix) = f(bx) — f(ax) for k=1,....n. .
Note that, in the above definition, if we substitute
ep = 1and A = {1}32, then ABV?([a,b]) reduces to Jordan variation
BV (la,b]).
o A= {1}, then ABV?([a,b]) reduces to Wiener variation BV?([a, b]).

e p = 1 then ABV?([a,b]) reduces to Waterman variation ABV ([a,b]) and
if in addition A = {n}°, then ABV?([a,b]) reduces to harmonic bounded
variation H BV ([a,b]).

It can be seen [45, p. 900] that the condition imposed on the sequence {\, }>° ; en-
sures that BV ([a,b]) C ABV ([a,b]), but ABV ([a,b]) does not contain all bounded

functions.

Clearly,
BV ([a,b]) € BV*([a,b]) C ABV?([a,b]) (1.3)



follows from

(Z m%’) < (L) (Z rfuk)v’); < (Ail)‘l’kzyfuk)r,

where f(I}) ,p and { )\ }x are as defined in Definition 1.1.2. The inclusion in (1.3)

is proper and can be shown using the zigzag function.

Example 1.1.1. Let ¢ = {¢,} be a non-increasing sequence of positive numbers
such that it converges to 0 as n — 0o. Let the function G(z) := G(¢; x) be defined
as continuous function on [0, 1] with G(0) = 0 such that G(z) linearly increases
by ¢; on [0, %} , linearly decreases by ¢y on [%,%

[2,Z] and so on. Clearly, G(1) = >_>°  (—=1)""c,.

478 n=1

} , linearly increases by c3 on

This function G is called a zigzag function due to the zigzag nature of the
function’s graph, as seen below. In the graph, the solid lines represent the graph

of the zigzag function and dashed lines represent c,’s.
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In view of [24, cf. p. 1069], we have,

00 Cﬁ
Vi (G [0,1]) = 3
n=1""

Thus, for ¢, = =, G(z) ¢ BV([0,1]) but G(z) € BV?*([0.1]) and for ¢, =
\/Lﬁ, G(z) ¢ BV2([0,1]) but G(z) € {n} BV*([0,1]).

Pierce and Velleman [45, cf. 901] showed that the following inclusion
properties hold for 1 < p; < ps <ocand 0 < B < B < 1:

BV?([a,b]) C BVP*([a,b])

and
{n"*}BV ([a,b]) C {n”*} BV ([a.b]).

These properties were further generalized by Goodarzi et al. [39, Corollary 1.5,
p. 831] as below: 1 <p; <py <ooand 0 < B < By < 1t

ABVP([a,b]) C ABVP([a,b])

and
{nPYBVP([a,b]) C {n?2}BVP'([a,b]).

Vyas [70, Theorem 2, p. 731] observed that (ABV?*([a,b]), ||.||a,) is a commutative
unital Banach algebra with respect to the pointwise operations and the following

norm

[ 1la, = [[flleo + Va, (f: [0, 8]) T € ABV*([a, b]).

Let R([a,b]) be a class of regular functions, i.e., bounded functions which have,
at most, removable discontinuities or discontinuities of the first kind (jumps) in
[a,b]. It was observed in [65, cf. p. 92], that the following inclusion properties
hold:
BV?([a,b]) = (| ABV?([a,b])
A

and

JABV?((a,b]) = R([a,b)).



In 2012, Vyas and Darji [15, Definition 2.1, p. 182] gave a definition of p — A vari-
ation for a function f : 0 — B denoted by ABV?(0,B), where ¢ is any non-empty
compact subset of R and B is a Banach algebra. In view of [15, Theorem 2.6, p.
183], for a commutative Banach algebra B, ABV?(c,B) with suitable variation

norm is a commutative Banach algebra with respect to pointwise operations.

Schramm and Waterman [55, p. 408] obtained the following result for the

order of Fourier coefficient for functions of A- bounded variation.
Theorem B. If [ € ABV?([0,27]), p > 1 and n € N, then

1 :
) =0 (ﬁ)

In 1937, Young [78] generalized the notion of bounded variation of order
p, p > 1 and introduced the class of functions of ® bounded variation, written
as @BV ([0,2n]). In 1982, Schramm and Waterman [55] gave the following gen-
eralization of bounded variation by assimilating ideas of Young’s ® variation and
Waterman’s A variation.
Definition 1.1.3. A function f defined on a rectangle I := [a, b] is said to be of
® — A— bounded variation (that is, f € ®ABV ([a,b])) if

J

Vio (f [a.b]) = sup {Z w} < oo,

i

where ® is a continuous function defined on [0,00) which is strictly increasing
from 0 to oo, A = {\,}22, is as defined in Definitionl.1.2 J is finite collections

of non-overlapping subintervals {;} in [a,b] and f(I) = f(b) — f(a).
Note that, in the above definition, if we substitute

o A ={1}>,, then PABV ([a,b]) reduces to Young’s variation ® BV ([a, b]).

n=1»

o O(x) =2aP, p> 1, then PABV ([a, b]) reduces to Shiba’s variation ABV?([a, b]).

In the above definition of & — A—bounded variation, it is typical to impose a
condition that ® is N function, which we will consider for ®ABV ([a,b]) from

here onwards.



Definition 1.1.4. A function ¢ defined on [0,00) is said to be N function if
following properties are satisfied:

1. ®(0) =0,

2. ® is convex,

3. @%OJ, asm—>0and¥—>ooasx—>oo.

The first condition ensures that a zero-length interval contributes nothing

to the variation. The second condition ensures that all the functions in BV ([a, b])
are in ®ABV ([a,b]) and the last condition ensures that there are functions in
O®ABV ([a, b]) which are not in BV ([a, b]). Also, if ® is N function then in view

of [6, p. 225] ® is strictly increasing, non-negative and continuous function on
[0, 00).

One another condition usually imposed with the space ® — A—bounded

variation functions, which makes it lincar space, is Ay condition [54, p. 273].

Definition 1.1.5. A function ® is said to satisfy A, condition if there exists a
constant d > 2 such that ¢(2z) < d®(x), for all x > 0.

Let

c®ABV (la, b)) ={f: c¢f € PABV([a,b]) for some ¢ > 0 and f(a) =0}

1f1]e =inf{k‘ >0: Vi, (%,[a,b]) < )\il}

Then in view of [34, Theorem 3.3, p. 120], (c®ABV ([a, b)), ||.||.) is Banach space.

and

Also, it was observed in [70, Theorem 3, p. 732] that (PABV ([a, b)), ||.||o,)
is a commutative unital Banach algebra with respect to pointwise operations,

where

[ lles = 1S loo + Vao (f:[a,0), | € ®ABV([a,b)).

Schramm and Waterman [55, p. 408] obtained the following result for the order

of Fourier coefficient for functions of ® — A— bounded variation.



Theorem C. If f € PABV(]0,27]) and n € N, then

1 1
w-o(+(s))

In 2011, the following notion of generalized bounded variation [66] was

given.

Definition 1.1.6. Let f be a complex valued measurable function defined on
I = [a,b]; {p(n)}e2, is a real sequence such that p(1) > 2 and p(n) T co as
n — oo; A = {\}32; be a non decreasing sequence of positive numbers such
that >, (A\g) ™" diverges; and for 1 < p < 00,1 < p(n) T p as n — oo. Then
S € ABV(p(n) 1T p, ¢, 1) if

Vi (o ) =500 sup { Vi (F L)) 5000 = 20 < o

n>1 {In}

where {I,,} is finite collection of non overlapping subintervals of I,

o 1/p(n)
Vi (o {Tn}) = (Z'f m)| ) |

f(Lyn) = f(bm) — f(am) and 6{1,,} = inf{|am, — b,,| : m € N}.

e If p(n) = p, Vn € N then ABV(p(n) 1 p,¢,I) coincides with Shiba’s
variation A — BVP(I) [57, p. 8] for 1 < p < 0.

e If p(n)=2", n=1,2,...,and A = {1}5° then the class ABV (p(n) 1 p, ¢, 1)
coincides with Kita and Yoneda’s variation BV (p(n) 1 p, 1) [35, Definition
1.1).

o If A = {1}%° then the class ABV (p(n) T p, ¢, I) coincides with Akhobadze’s
variation BV (p(n) 1 p, 1) [4, Definition 1, p. 401].

Note that, f € ABV(p(n) 1 p,¢,I) implies f is bounded function on I [66,
Lemma 3.1, p. 217]. Also, there exists f € BV (p(n) T p, ) having second kind
of discontinuities [35, Theorem 3.3, p. 235]. Let B([0,27]) be a class of bounded
functions in [0, 27| then in view of [4, Lemma 2, p. 404], BV (p(n) 1 o0, ¢, [0, 27])
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and B([0, 27]) coincides if and only if there is some positive constant K such that
for all n € N, (¢(n))77 < K.

It was observed [66, Theorem 1, p. 216] that ABV (p(n) T p,p,I) is a
Banach algebra with respect to pointwise operations and the convolution product
with the norm defined for f € ABV (p(n) 1 p. ¢, 1) as

||f||UG7’ = ||f||OO+VAp(n)(f7§07[)'

Here, the convolution product [20, cf. p. 50] of two integrable functions f and g,
denoted by f * g is given as

1 2T o
frglz)=— f)g(x —t)dt; Yz € T.
2 Jo
The following inclusion relations were proved by Vyas [67, Lemma 2.7, p. 226]
for 1 < p < oc:
BV(I) C BV (p(n) T p.¢, 1)

and
J BV“(1) € BV(p(n) 1 00, ,1) € BVP(1).

1<g<p
Later on, Goodarzi et al. [39, Corollary 1.7, p. 831] obtained the following

inclusion relation for 1 < p < oo:

U ABV(la,0]) € ABV (p(n) T p, ¢, [a.b]).

1<g<p

The order of Fourier coefficients [66, Theorem 3, p. 216] for the function in
ABV (p(n) 1 o0, ¢, a, b]) class is as follows.

Theorem D. If f € ABV(p(n) 1 00,¢,[0,27]), 1 < p < ocand n € Z\ {0},
then

where
7(n) =min{k: k€ N,p(k) >n},n>1. (1.4)



In 2002, Akhobadze [5] further generalized BV (p(n) T p, ¢, ) in the fol-

lowing manner:

Definition 1.1.7. Let f be a 27 periodic measurable function and let p(n), p
and ¢(n) be defined as in Definition 1.1.6. Then f € BA(p(n) 1 p, ¢, T) if

- 1 0y
A(f,p(n) T p,e,T) =sup sup {EAIf(x+h)—f(x) |p(m) da:} < 0.

m>1 p>_1
=p(m)

It was shown [5, Corollary 1, p. 227] that f € BA(p(n) T oo, ¢, T) then

[ is essentially bounded function. Also, if f € BV (p(n) 1 00,9, T) then f €
BA(p(n) 1 o0, ,T) [5, Theorem 3, p. 227]. Further, the following result [5,
Theorem 5, p. 228] related to the order of the Fourier coefficient was given.

Theorem E. If f € BA(p(n) T 00, ¢, T) and n € Z\ {0}, then

) =0 (;>
| |7

where 7(n) is as defined in (1.4).

In the literature, several results related to the order of magnitude of Fourier
coefficients have been obtained for functions of generalized bounded variation for

various generalized Fourier series.

1.2 Rational Fourier coefficients’ properties of
one variable functions of generalized bounded

variations

The classical Fourier series is generalized to various orthogonal Fourier series to
provide flexibility in approximating different functions, better convergence prop-
erties, numerical efficiency and applications in other areas of Mathematics, Engi-
neering and Physics. The Fourier series, the Legendre Fourier series, the Cheby-

chev Fourier series and the Walsh Fourier series are suitable for approximating
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smooth periodic functions with no singularities [31], smooth bounded functions
[17], analytic functions [63] and binary functions [26] respectively. Depending on
the type of function to be approximated, different types of orthogonal Fourier
series provide different convergence properties. The Fourier series, the Legendre
Fourier series, the Chebychev Fourier series and the Walsh Fourier series con-
verge uniformly for smooth functions, converge uniformly for square-integrable
functions, converge uniformly for analytic functions and converge for periodic
continuous functions, respectively. There are many more such orthogonal Fourier

series.

The choice of orthogonal Fourier series depends on the specific problem or
application and the required accuracy. The classical Fourier series is not very effi-
cient in approximating non-periodic functions and functions with discontinuities
or singularities; to overcome such limitations, the rational Fourier series is more
suitable [21, 13]. Moreover, with the appropriate selection of parameters, the
rational Fourier series exhibits faster convergence and better accuracy than the
classical Fourier series for certain functions [46, 50]. It should be noted that the
computation of rational Fourier series can be more complex and computationally
intensive than Fourier series. Besides theoretical applications [33, 44, 53], the
rational Fourier series finds numerous other applications in fields such as control
theory [11], system identification [3], signal compression [36], denoising [73], and
many more fields [3, 43, 48, 74, 47, 49]. Thus, it is interesting to know the be-
haviour of the rational Fourier series, which has the orthogonal system as the

rational orthogonal system.

The rational orthogonal system is defined Vn € N as

and ¢_,(e™) = ¢, (ei®), (1.5)

where {a, }nen is complex sequence such that «y’s are in open unit disk . These

ay’s are also called poles of the rational orthogonal system.

In the 1920s, the rational orthogonal system was independently defined
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by Malmquist [37] and Takenaka [59]. Thus, the rational orthogonal system is
also called the Takenaka-Mamquist (or Malmquist-Takenaka) orthogonal system.
Achieser [1] observed that the system in (1.5) is complete in L?[0, 27] if and only
if > (1 — |ak|) = co. The simplest way to satisfy the previous completeness
condition is to assume

sup |ag| =1 < 1. (1.6)
k
In the sequel, we assume that the condition (1.6) holds.

In 1956, Dzrbasyan [19] defined the concept of rational Fourier series with
the orthogonal system as a rational orthogonal system. He obtained specific

results for the rational Fourier series under condition (1.6).

If [ is 27 periodic integerable function, then the rational Fourier series of
f is defined as

f(@) ~ Y f(m)u(e™), (1.7)

n=-—oo

where f (n) is the n'* rational Fourier coefficient of f, given by

fn) = - /  f () (18)

T or

If ap = 0, for all k € Z in (1.5), the rational Fourier series reduces to Fourier

series.

Let oy, = |ag|e™®. Then, ¢,(e™®) = p,(x)e»® (cf. [19]), where

(2) 1 —|a,|?
n\T) =
P 1 — 2|y | cos(z — @) + | |?

and

n—1

0.0 =3 L= Joud

=1 — 2|ay| cos(z — a) + |a|?

L1 1= |an|? 1
2 \ 1 = 2|ay| cos(z — z,,) + |an|? 2

Here, 6,,(x) is a differentiable and strictly increasing function on [0, 27} [10, cf. p.

465]. Tt is easy to verify that if all the poles of the rational orthogonal system are
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zero, then it reduces to the classical exponential system and the rational Fourier
series becomes the classical Fourier series. So, the rational Fourier series can be

considered, in a way, a generalization of the classical Fourier series.

Note that, there are some properties of the rational Fourier series that
differ from the classical Fourier series. It can be seen from the example below that
one primary result, related to convolution, fails for rational Fourier coefficients.
If ¢,(f) and ¢,(g) are Fourier coefficients of 27 periodic integrable functions f

and ¢ then from [20, cf. p. 51], for n € Z, it is clear that

en(f * g) = el f) cnlg).

But, the above result does not hold for rational Fourier coefficients as f(z) =
3

g(z) =sinz, n=1and oy = 5 gives f)y=g(1)= _)4/5" and m(l) = %f.

Also, for n € Z, |e,(f)] < ||f||x where ||f]i = 5= 02” |f(x)|dx. The anal-
ogous result for the rational Fourier coefficient slightly differs based on the poles

of the rational orthogonal system and is given by

A 1
Fm)l <\ T2y neZ.

where r is given as in (1.6). Thus, it is interesting to analyse the difference in

various properties between rational Fourier series and classical Fourier series.

Tan and Zhou [62] carried out the study of rational Fourier coefficients in
2013. Firstly, they gave an analogous result of Riemann Lebesgue Lemma for ra-

tional Fourier series by proving the following inequality [62, Theorem 2.1,p.1739]:

Theorem F. If [ € L'([0,27]) and n € N then

: 1 Txr [, (4] ]l @+ )2
o0l < gl e || + M T

where w(f;6) = supg_p<s [|Tn(f) = flI1.

Clearly, for f € L'([0,27]), using the fact that w(f;d) — 0 as § — 0, it
can deduced that f(n) — 0 as n — oo. Thus, it can be considered Riemann

Lebesgue Lemma for rational Fourier coefficients. It should be noted that by
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following proof as in [62, Theorem 2.1, p. 1739] and replacing n by |n|, the
inequality in (1.9) can be easily proved for n € Z \ {0}.

The result of Schramm and Waterman (Theorem C on p. 8) of the order of
Fourier coefficients of functions of ®ABV[0, 27] is generalized for rational Fourier
coefficients [62, Corollar 2.6, p. 1742] as follows:

Theorem G. If f € PABV(]0,27]) and n € N, then

A 1
nN=0d" ——r .
) ( (zi’il%j))

In Chapter 2 of the thesis, the results for order of magnitude of rational
Fourier coefficients for functions of Lip(a,p)([0,27]) (Definition 1.1.1 on p. 2)
class and generalized variations due to Vyas (ABV (p(n) 1 p, ¢, T)) (Definition
1.1.6 on p. 8) and Akhobadze (BA(p(n) 1 p, ¢, T)) (Definition 1.1.7 on p. 10) are
obtained, using the technique given by Tan and Zhou [62]. Therefore, Theorem
A (p. 2), Theorem D (p. 9) and Theorem E (p. 10) have been generalized for

the rational Fourier coefficients.

1.3 Order of magnitude of double and multiple

Fourier coeflicients

The theory initially studied for functions having one variable is often extended
for functions with two variables. The properties of these two variable functions

are compared with the properties of single variable functions.

The double Fourier series of an integrable function f, which is 27 periodic

in both variables, is defined as

o o

f(x,y) ~ Z Z Cmn(f)eimxemy7 (1-10)

M=—00 N=—00

14



where ¢, (f) is the n'* Fourier coefficient of f, given by

1 n o —imx  —1in
nnl 1) = 1 / [ fape e sy (1.11)

The Riemann Lebesgue Lemma is extended for the double Fourier series as below:

It f € LM(T"), (m,n) € Z2 then comn(f) — 0 as [mn| = v/|m]2 + |n]2 = oo.

This Riemann Lebesgue Lemma does not estimate the order of double Fourier
coefficients and thus, various subclasses of Ll(TQ) are studied. One such sub-
class is Lip(p; ¢, 3)(T2) class, which is extension of Lip(;3, p)(T) for two variable
functions. Vyas and Darji [71, Definition 1.1, p. 27]|defined this class as below:

Definition 1.3.1. Let f € LT’(TQ),p > 1 and ¢, 8 € (0,1], we say that f €
Lip(p; ¢, /3)(T2), if w®(f;6,7) = 0(5y") as 6 and v — 0, where

1 v
w(”)(f;é,v)=Sup{<—4ﬂ2//2IAf(a?,y;h,k)!”dxdy) ;0<h§5,0<k§7}
T

and Af(z,y;h, k) = f(x+h,y+ k) — fla+hy) — f(x,y+k)+ f(z,y).

The class Lip(p; C, ,3)(T2) reduces to Lip(C, ﬁ)(TQ) for p = oo.

Vyas and Darji [71] obtained the order of double Fourier coefficients of
functions in Lip(p; ¢, B)(TQ) class.

Theorem H. If f € Lip(p;¢, B)(T)p > 1,¢, 3 € (0,1] and (m,n) € (Z\ {0})?

then )
enn(f) = O (rm|<rn|ﬂ> '

Soon after Jordan studied bounded variation, several mathematicians be-
gan to study the notion of bounded variation for functions of two variables. When
defining bounded variation functions for two variables, one has different choices
depending on the specific context and requirements of the given problem, as the
functions of two variables can exhibit more complex behaviour compared to single
variable functions. The notion of bounded variation is extended for two variables

in various ways, like in the sense of Vitali, Fréchet, Hardy, Arzela and others as

15



can be seen in [14]. Here, we will consider definitions of functions of generalized
bounded variation mainly in the sense of Vitali and Hardy. In this section, the

following notation for two variable functions f will be frequently used,

S xJ):= [(Ja,b] x [e,d]) = [(b,d) — [(a,d) — [(b,c)+ [(a,c)
The definition for two variable functions of bounded variation in the sense of
Vitali [14, Definition V, p. 825] is as follows:

Definition 1.3.2. A function f defined on a rectangle R? := [a,b] X [c, d] is said
to be of bounded variation in the sense of Vitali (written as, f € BVy/(R?)) if

V(L) = sup {ZZ (I x Kj>|} < o,

where J; and Jy are finite collections of non-overlapping subintervals {/;} and

{K;} in [a, b] and [c, d] respectively.

It can easily be verified that the function of bounded variation in the
sense of Vitali need not be bounded from the example [25, Example 1.19(i), p.
23] below:

Example 1.3.1. Let f : [0, 1]> — R be defined as

%—i—i, if # # 0 and y # 0,

L if x#0and y =0,
flzy) =4 7 .

) ife=0and y#0,

0, if =0and y=0.

Clearly, V(f,[0,1]*) = 0. Thus, f € BVy([0,1]?) but f is unbounded
on [0,1]%. This is quite different from its one-dimensional analogous definition,
where if a function is of bounded variation on some interval, then it is always
bounded on that interval. We need a definition of bounded variation for two
variable functions that capture the overall variation in a manner analogous to the
concept of bounded variation for single variable functions by separately analysing
variations along each coordinate direction. This can be achieved by considering
bounded variation in the sense of Hardy [14, Defintion H, p. 825] for two variable

functions defined as follows.
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Definition 1.3.3. If f € BVy/(R? := [a,b] X [c,d]) is such that the marginal
functions f(.,c) € BV([a,b]) and f(a,.) € BV([c,d]) then f is said to be of
bounded variation in the sense of Hardy (written as is, f € BVy(R?)).

It would follow that if f € BVy(R?) then f is bounded on R? because

|f(m7y)! S‘f(x7y) - f(a7 y) - f(JT,C) + f(a7 C)’
+1f(a,y) = fla, Ol + [f(z,¢) = fa, )| +[[(a, )]
<V([, R*) +V(f(a..),[e,d]) + V([ (., 0).[a,b]) + [ (a,c)].

It is also known [2, p. 722] that if f € BVy(R?), then the discontinuities of f
are located on a countable number of lines parallels to some of the axes. Hence,
[ is Lebesgue measurable over R?. Subsequently, f is also bounded over R? and
hence, f € L*(R?).

The upcoming three results for double Fourier coefficients are due to Fulop
and Méricz 22, Case n=2|. Later, Schramm and Waterman [56] proved these

results using different techniques.

Theorem 1. If f € BVi,/(T") N L'(T2) and (m,n) € (Z\ {0})? then

Corollary A. If f € BVy(T") and (m,n) € (Z\ {0})? then

Corollary B. If f € BVH(TQ) and n € Z \ {0} then

n=o3)

The concepts of bounded variation in the sense of Vitali and Hardy are fur-
ther generalized. Vyas and Darji [71, Definition 1.2, p. 28] defined p— A—bounded

variation in the sense of Vitali and Hardy as follows:

Definition 1.3.4. Given A = (A, Ay) where Ay = { A to2; and {Agn)tol,
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is a non-decreasing sequence of positive numbers such that

k=1, 2, and p > 1, a measurable function f defined on a rectaﬁgle R? is said
to be of p — A—bounded variation (that is, f € ABV?(R?)) if

VAP(f’ R2) = sup (ZZ ’f/\i )XAf | ) =0

Ji,J2 ]

where R? J;, Jo, I; and K are as defined earlier in the Definition 1.3.2.

Let f be as defined earlier in the Example 1.3.1 on p. 16 and thus
Vi, (f,]0,1]%) = 0. Thus, a function f € ABV?(R?) need not be bounded.

This class is further defined in the sense of Hardy as follows.

Definition 1.3.5. If f € ABV?(R?) is such that the marginal functions f(.,c) €
A1 BV?(Ja, b)) (see Definition 1.1.2 on p. 3) and f(a..) € Ao BV?([c,d]) then [ is
said to be of p — A*—bounded variation (that is, f € A*BV?(R?)).

If f € A*BVP(R?) then f is bounded, as
’f(l‘ y)| §|f(x,y) - f(a’vy) - f(xv C) + f(av C)’
+1f(a,y) = fla, O +1f(z, ¢) = fla, c)| + |f(a, c)]

()\ LA 2)) VAp(f Rz) + >\(1 Q)VAzp(f(a7 s le, d])
+ >‘(51,1)VA1P (f(v C)? [a= b]) + ’f(a7 C)|

Note that if we substitute

e Ay = Ay = {1} and p = 1, then the classes ABV?(R?) and A*BV?(R?)
reduce to the classes BVi,(R?) and BVp(R?) respectively.

e p = 1, then the classes ABV?(R?) and A*BVP(R?) reduce to the classes
ABV(R?) (defined by Sablin [52] and Saakyan [51]) and A* BV (R?) respec-
tively.

o Ay = Ay = {1}, then the classes ABV?(R?) and A*BV?(R?) reduce to the
classes BVP(R?) (defined by Golubov [27]) and BV} (R?) respectively.

18



For any A = (A1, As), [;, K; and p > 1 as defined in Definition 1.12, we have

(szzlfle( !p) §<A11)A21)> (ZZ'fI x K;) )

AL A@j)

<<W) S 1)

This implies
BV (R?) € BVP(R?) ¢ ABV®(R?)

and hence
BVy(R?) ¢ BVIP(R?) ¢ A*BVW(R?).

Dyachenko and Waterman [18, Proposition 1, p.401] showed that class A* BV (R?)

contains everywhere discontinuous function.

Vyas and Darji [15, Definition 3.1, p. 184] gave a definition of p — A
variation for a two variable function f : o — B denoted by ABV?(0,B), where o
is any non-empty compact sub-rectangle of R? and B is a Banach algebra. In view
of [15, Theorem 3.6, p. 185], for a commutative Banach algebra B, ABV?(o,B)
with suitable variation norm is a commutative Banach algebra with respect to

pointwise operations.

Vyas and Darji [71, Theorem 2.1 and Corollary 2.1, p. 30] obtained the

following two results related to the order of double Fourier coefficients

Theorem J. If f € ABV(p)(T2) N LP(TZ) (p>1)and (m,n) € (Z\ {0})?, then

Cmn(f) = O . (1.12)
(Z‘m‘ Z‘knll A /\(2 k))

S =

Corollary C. If f € A*BV(p)(TQ)ﬁLP(T2) (p>1) and (m,n) € (Z\{0})?, then
equation (1.12) holds.

The variations PABV and ®A*BV are defined [72, Definition 1, p. 1153]

as follows:

Definition 1.3.6. A measurable function f defined on a rectangle R? is said to
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be of ® — A— bounded variation (that is, f € PABV (R?)) if

Ve (f, R?) SUP{ZZ |fIXKD}<oo

Jida | A A@,)

where @ is an continuous function (see Definition 1.1.4) defined on [0, c0) which
is strictly increasing from 0 to oo and R2, J, Jy, I; and K are as defined earlier
in the Definition 1.3.2.

The above generalized variation is in the sense of Vitali. Here, f €
®ABV (R?) need not be bounded as for the unbounded function [ as defined
earlier in the Example 1.3.1 on p. 16, we have V) (f, [0,1]*) = 0.

® — A—bounded variation is given in the sense of Hardy as follows.

Definition 1.3.7. If f € ®PABV(R?) is such that the marginal functions f(.,c) €
DA BV ([a,b]) and [(a,.) € PAyBV([c, d])(see Definition 1.1.3 on p. 6) then [ is
said to be of ® — A*— bounded variation (that is, f € ®A*BV(R?)).

Note that in view of [72, Corollary 1, p. 1156] if f € ®A*BV(R?) then
[ is bounded function in R?. Note that, if we substitute ®(x) = 27, p > 1,
then ®ABV ([a,b]) and PA*BV ([a,b]) reduce to ABV?([a,b]) and A*BV?([a,b])
respectively. In the above definition of ® — A—bounded variation and & — A*—
bounded variation, it is typical to impose a condition that ® is N function (see
Definition 1.1.4), which we will assume for ®ABV (R?) and ®ABV (R?) from here

onwards.

Vyas and Darji [72, Theorem 1, Corollary 1 and Corollary 2] obtained
the following three results related to the order of double Fourier coefficients for

functions of ® — A—bounded variation both in the sense of Vitali and Hardy:.
Theorem K. If ¢ satisfies Ay condition, [ € @ABV(TQ) nL! (TQ) and (m,n) €
(Z\ {0})* then

1
[m| [n]
E 1 2k A, J>f\<2 k)

con(f) =0 | 7! (1.13)
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Corollary D. If ¢ satisfies Ay condition and f € @A*BV(TQ) and (m,n) €
(Z\ {0}) then condition (1.13) holds.

Corollary E. If & satisfies Ay condition, f € @A*BV(TQ) and m € Z\ {0} then

1

eno(f) =0 [ @71 T
Zlﬁ!l A(ij)

By extending the class of generalized bounded variation due to Schramm
and Waterman [55] for two-variable functions and Definition 1.3.6, Darji and Vyas
[16, p. 2] gave the following two definitions of (®, U)(A, ') BV and (¢, ¥)(A. I')*BV.

Definition 1.3.8. Let A = {\,}>2, and F = {7 }2, be a non-decreasing se-

quence of positive numbers such that lim Z A = lim Z Ve = 00, let ® and ¥

n—oo n—oo
be continuous and increasing functions on [0 o0) and ]1, ]2, I; and K are as de—
fined earlier in the Definition 1.3.2. Then a complex measurable function f € T
is said to be of (&, W)(A,T)BV(T") if

Viar)w (1 T) = sup (z Ly (Z Ll K»D)) .

J1,J2 Ve i

The above variation (®, U')(A, ') BV is in Vitali sense. Note that, a func-
tion f € (&, V)(A, F)BV(TQ) need not be a bounded function.

Clearly, (@, V) (A, F)BV(TQ) reduces to @ABV(TQ) for U(z) =

In the above definition of (®, )(A.I') bounded variation, it is typical to
impose a condition that ® and ¥ are N function (see Definition 1.1.4), which we
will assume for (@, U)(A, F)BV(TZ) from here onwards.

The variation (¢, U)(A,I')B V(TQ) in Hardy sense is given as follow.

Definition 1.3.9. If f € (®, U)(A, F)BV(TZ) and the marginal functions f(0,.) €
®ABV(T) (see Definition 1.1.3) and f(.,0) € WI'BV/(T), then f is said to belong
o (®,T)(A.T)*BV(T").

If fe(dU)(A, F)*BV(TQ), then f is bounded on T~ [16, Lemma 2.2, p.
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In 2020, Darji and Vyas [16, Theorem 2.1, Corollary 2.3 and Corollary
2.5] obtained the following three results related to the order of double Fourier

coeflicients.

Theorem L. If f € (&, T)(A,T)BV(T") N LY(T°) and (m,n) € (Z\ {0})2, then

oo (e (@) e

where Ap,| = Z‘m‘ A'and Ly = Elkn; ’Yk_l-

Jj=17"

Corollary F. If f € (¢, V)(A, F)*BV(TQ) and (m,n) € (Z\{0})?, then condition
(1.14) holds.

Corollary G. If ®, ¥ satisfies Ay condition, f € (&, U)(A, F)*BV(TZ) and
(m,0) € (Z\ {0})?, then

where A, = Z‘]@l A
Vyas [69, Definition 2.1, p. 435] extended the definition ABV (p(n) 1
p, ¢, I) (see Definition 1.1.6) of one variable for two variable as follows.

Definition 1.3.10. Let [ be a complex valued measurable function defined on

R = IW x IO = [ay, by] % az, bo; A = (AD, A®) | where A®) = {/\,(f)} is a
k=1
-1
non decreasing sequence of positive numbers such that ), (/\,(:)) diverges for
t=1,2; {p(n)}>2, is a real sequence such that ¢(1) > 2 and ¢(n) 1 0o as n — oo

and for 1 < p < oo,1 < p(n)tpasn— oo. Then f € ABV(p(n) 1 p, e, R?) if
Vi (9 (n), %) = sup - sup {VApm <f7 {]i(l) X ];2)})
n>1 {I,L'(I)XI](-Z)}

o) o @) < (b —a)(be —ag)
.5{]2- X 1; }2 ~(n)? < 00,

where {Ii(l)} and {] ;2)} are finite collections of non overlapping subintervals of
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I and I® respectively,

p(n)\ 1/p(n)

7 (10 x 1
Vayo (1 {1 5 1P}) = ZZ <A<§A<2>> ’

J (I 5 A®) = [(b1,b2) = [(ar,bs) = [(br,a2) + [ (a1, a2)

and

o {1 x 1} = 3{{siv. i X o, ]} = inf |(si = sica)(t = t-1)]
4,3

The above variation is in the sense of Vitali. Note that, a function f €
ABV (p(n) 1 p, ¢, R?) need not be bounded (see [69, Example 2.2, p.436]). The

above variation in the sense of Hardy is given below.

Definition 1.3.11. If f € ABV(p(n) 1 p,, R?) and the marginal functions

S (. az) € ADBV (p(n) 1 p, @, [ar, b)) and [(a1,.) € AP BV (p(n) 1 p, ¢, [as, b)),
then f € A*BV(p(n) T p, ¢, R?) .

Note that, the function f € A*BV(p(n) 1 p,p, R?) is bounded. If we
substitute A = ({1},{1}) in ABV(p(n) 1 p, ¢, R?*) and A*BV (p(n) 1t p, ¢, R?)
then we get BVy (p(n) 1 p, o, R?) and BVg(p(n) 1 p, ¢, R?) (sce Definitions due
to Vyas [68, Definition 2.1 and 2.2]).

Let B(R?) represent a class of two variable bounded functions on R? :=
[a,b] % [c,d] then in view of [68, Lemma 3.3, p. 150], for 1 < p < oo, we have

B(R?) N BVE(R?) € B(IR*) N BVy(p(n) T oo, @, 1t?),

BV} (R?) C BVi(p(n) 1 00, 0, R,
B(R)N | BVA(R?) C B(R*) N BV (p(n) 1 p, ¢, R?) C B(R?) N BVE(R?)
1<q<p

and

J BVE(R®) € BVu(p(n) 1 p, ¢, R*) C BVS(R?)

1<q<p

In 2015, Vyas [69, Theorem 3.1, Corollary 3.3 and Theorem 3.4] obtained the
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following three results related to the order of double Fourier coefficients.

Theorem M. If f € ABV(p(n) 1 00, 0, T-) N L=(T") and (m,n) € (Z\ {0})2,
then

Cmn(f) = O (1.15)

1
il . PG qman)
i=1 Zik=1 (1), (2)
J Aj AR

7(n) =min{k: k€ N,p(k) >n},n > 2. (1.16)

where

Corollary H. If f € A*BV(p(n) 1 00,¢.T) and (m,n) € (Z\ {0})2, then
condition (1.15) holds.

Corollary I. If f € A*BV (p(n) 1 00, ¢, T°) and m € Z\ {0}, then

w1\ |
Zj:l Ne)
where 7(|m/|) is as defined in (1.16).

In the rest of this section, we will consider theory for several variables,
extending definitions and results for two variable functions to N variable functions
for N € Nand N > 2.

For a function, f € L! (TN), which is 27 periodic in all the variables,

multiple Fourier series of f is defined as

ki1€Z ko€ k:NEZ

where N € N and ¢, 1, (f) is the (ky, ..., ky)"™ multiple Fourier coefficient of f
given by

1 ) .
Chyky (f) = W//I[‘N f(xy, ..., e o e hNeN gy day.

The following Riemann Lebesgue Lemma holds for multiple Fourier coefficients:
If fe LI(TN)7 (K1, kn) € ZN, then cg, gy — 0 as \/|k1|2 + ... + [kn|? — .
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Now, since Riemann Lebesgue Lemma does not give the order of mag-
nitude of multiple Fourier coefficients, we will look into various subclasses of
L! (TN), namely Lip(p; 51, ..., Bn) (TN) and class of functions of generalized bounded

variation.
Vyas and Darji [71, p. 33] gave the following definition.

Definition 1.3.12. Given (zy,...,xy) € T and f e LP(TN), where p > 1, the
p-integral modulus of continuity of f is defined as

w(p)(fa 617 ceey 6N)

= sup { (W [ .. fTN IAf(x1,...,xN; P, hN)|pdx1...da:N>

S =

0< h; <6 \V/izl,Q,...,N},

where

1 1
Af(l‘l, ..., TN, hl, cees hN) = Z Z (—1)u1+"'+uNf(ZB1 + U1h1, e, TN uNhN)‘
u1=0 un=0

Forp > 1and f3; € (0,1], foralli = 1,2, ..N, we say that [ € Lip(p; S, ..., BN)(TN)

if
WO (f381, 0. 0n) = O(87"...05Y).

If p = oo then Lip(p; 54, ..., S’N)(TN) reduces to Lip(fy, ..., ﬁN)(TN).

/

Vyas and Darji [71, Theorem 4.3, p. 35] obtained the following result for
the order of multiple Fourier coefficients for functions in Lip(p; f1, ..., /3N)(TN)

class.

Theorem N. If Lip(p; A1, ..., Bx) (T ). p > 1, B, oo, By € (0,1] and (ki ..., k) €

(Z\ {0})" then 1
Chyoden () = O (W) '

Vyas and Darji [72, Definition 1, p. 1153] defined & — A— bounded vari-

ation in the sense of Vitali and Hardy.

Definition 1.3.13. A measurable function f defined on a rectangle RY := [ay, b;]
X[ag, ba] X ... X [an.by] is said to be of ® — A— bounded variation ( that is,
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f € ®ABV(RY)) it

Vo (fs RY bup {Z Z U i ](N’kN))D} < 00

..... A<1 k1) A(zv,km

where ® is a N function (see Definition 1.1.4) defined on [0, co) which is strictly in-
creasing from 0 to oo; A = (A1, Ag, ..., Ax) where Ay = { A oy and {Aem Fozy
is a non-decreasing sequence of positive numbers such that ) —— dlverges
for k =1,2,....,N; Ji,...,Jy_1 and Jy are finite collections of non—ovelldppmg
subintervals {I(l’kl)}, o N1y ) F and { (v ey} i [ag, b, . [an—1, by—1] and
[an, by] respectively; and f(J; X ... x Jy) = f(J1 X ... X In_1,bn) — f(J1 X

JIn-1,an), here f(J1) = f(b1)—f(ar), f(J1xJ2) = [(b1,b2)+ f(ar, az)— [ (b1, az)—

f (a1, be) and so on.

The above generalized variation is in the sense of Vitali. Here, f €
PABV(RY) need not be bounded. This class is further generalized in the sense
of Hardy as follows.

Definition 1.3.14. A function f € PABV (RY) is said to be of ® —A*— bounded
variation (that is, f € ®A* BV (R")) if for each of its marginal functions

f(l‘l, ey Li—1, Ay Ty 1,5 ...,ZBN) S @(Al, cey Ai—la Ai-l—la ceey AN)*BV(p)(RN((IZ))
Vi=1,2,...,N, where

RN(a,») ={(x1, ..., Tiz1, Tiz1, ..., TN) € RNz, € [ak, bk]

Vk=1,..,i—1i+1,.N}

Note that f € ®A*BV (RY) implies that f is bounded function in R2.

Vyas and Darji [72, Theorem 2, Corollary 3 and 4] obtained the following

three results for the order of multiple Fourier coefficients.

Theorem O. If f € ®BABV(T" )N LYT") and (k. ..., ky) € (Z\ {0}V then

1

[Foa k|
Zi1:1 EzN 1 X1y )\(NZN)

Chyoky =0 [ @71 (1.17)
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Corollary J. If f € @A*BV(TN) and (ky,....,kx) € (Z\ {0})" then condition
(1.17) holds.

Corollary K. If ® satisfies A, condition, f € @A*BV(TN) and (ki,....ky) € ZN
is such that k; # 0 for (1 <)j; < ... < ju(< N)and k; =0 for (1 <)l; < ... <
In-m(< N), where {l,...,Ix_p} is the complementary set of {ji,...,ja} with
respect to {1,..., N}, then

1
|k

|kj1‘ 1\/1| 1
Zilzl Zz‘M:I >‘(j1,

il)"'A(j]bIai]bI>

Chyohy =0 [ @71

In Chapter 3 of the thesis, the Riemann Lebesgue Lemma for double
rational Fourier coefficients is obtained. The orders of magnitude of double ra-
tional Fourier coefficients for Lip(p;( ,,8)(T2) class (Definition 1.3.1 on p. 15)
and the classes of generalized bounded variation functions like CI)A*BV(TQ) (Def-
inition 1.3.7 on p. 20), (¢, ¥)(A, F)*BV(TZ) (Definition 1.3.9 on p. 21) and
A BV (p(n) 1 p, @,TQ) (Definition 1.3.11 on p. 1.3.11) are estimated. Also, the
Akhobadze class of variation, BA(p(n) 1 p, ¢, T) (Definition 1.1.7 on p. 10), is
extended for two variable function and the order of double rational Fourier co-
efficients for functions from this extended class is obtained. Furthermore, these
results of the order of double rational Fourier coefficients are extended for multiple

rational Fourier coefficients.

1.4 Rate of convergence of Fourier and double

Fourier series

The significant aspect of studying the Fourier series of an integrable function is
determining the conditions of convergence of the Fourier series, that is, the general
property of the Fourier series approaching the function it represents. One of the
important tests for determining the convergence of the Fourier series is called the
Dirichlet-Jordan test. Before moving on to the test, let us define partial sums of

the Fourier series.
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For some n € N, the partial sum of Fourier series of f is given by

n

suf(@) =Y el(f)e™,

k=—n

where ¢, (f) is k' Fourier coefficient defined as in (1.2).

The Dirichlet-Jordan [79, p. 57| test for convergence of Fourier series is

as given below:

Theorem P. If f € BV(T) then at every point 2y € T, s,f(z) converges to
L 1f(z+0)+ f(x —0)]. Furthermore, if f is continuous in T then s, f(z) con-

verges uniformly in T.

The test does not give any rate at which the partial sum of the Fourier
series converges. The information on the rate of convergence of Fourier series
is crucial for determining accuracy and understanding it helps in accessing how
quickly the Fourier series approaches the original function. In 1971, Bojani¢ [8, p.
57] gave a quantitative version of the Dirichlet-Jordan test in terms of variations

as follows.
Theorem Q. If f € BV ([—7, 7)) and g.(¢t) = f(x+t)— f(z—t)— f(24+0)— f(z—0)
then

suf ()~ 5 G+ 0) 4 =01 < 257V (g [0, 7).

where V (g,, [0,t]) is variation of g, on [0,y], y € [0, 7].

The above result of Bojani¢ was further generalized by Waterman [76, p.
52] in 1982 for A bounded variation as follows.

Theorem R. If f € ABV([—m, 7)), g.(t) = f(xz+t)— f(z—t)— f(z+0)— f(x—0),

A—k’“ is non increasing and for fixed n, H(t) is a continuously non increasing function

on (0, 7] such that H(t) = %; where ¢ = nk—jr'l and k= 1,2,...,(n+ 1) and ;75 =

Ay < Up_1 < ... < ag = 7, then

[snf () = ()]

< (14 2) | 22 0A 0 0.7D) + T S Vil D)) ~ H(00)|

28



where V} (g., [0,t]) is A—variation of g, on [0,y], y € [0, 7.

The conjugate Fourier series is given by

o

Y (=i)sgu(n)en(f)e™

n—=—oo

and the partial sum of conjugate Fourier series of f is given by

n

5f@) = 3 (=i)sn(k)en(f)e™.

k=—n

In 1987, Mazhar and Al-Budaiwi [38, p. 178] obtained an estimate of the rate of

convergence of conjugate Fourier series of functions of bounded variation.

Theorem S. If f € BV ([—m,7]) and g, (t) = f(z+t)— f(z—t)— f(x+0)— f(x—0),

then .
-7 (. 5)| < 230 (0 [0 7).

where V' (g, [0,]) is variation of g, on [0,y], v € [0, 7] and

firg =2 [ 50

= | Tt ™

For some m,n € N, the partial sum of double Fourier series of f is given
by

smnf (T,9) = D> Y an(f)em™em™,

l=—m k=—n

where ¢ (f) is [k double Fourier coefficient defined as in (1.11). Also, let

S(f32,) = U0,y 0+ £ (2H0,y=0)+ /(20,5 0)+ f(z0,5=0)]. (L18)

In 1906, Hardy [28] proved the following Dirichlet-Jordan test for double Fourier

series of functions of bounded variation in Hardy sense.

Theorem T. If f € BVH(T2) then double Fourier series of f converges to
S(f;z,y) (1.18) at any point (z,y) € T

Note that the convergence mentioned above is of partial sum s,,, f(z.y) in
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Pringsheim’s sense, i.e., when m and n tend to oo, independently of one another.
In 1992, Mdricz [41, Theorem 3, p. 349] quantified Hardy’s result and gave
the following quantitative version of the Dirichlet-Jordan test for double Fourier

series.

Theorem U. If f € BVH(TQ) then

|Smnf(x y) - (fm y)|

((17;1+4_2{7T+1/7T i - V( myj[jﬂ " [O%D

j=1 k=1

L (st [p )

Jj=1

21 +1/m) <&

S Y (a0 [0 7]).

k=1

where ¥(u, v) == 1y, (u, v)

fle+uy+ov)+ fe+uy—v)+ flx —u,y+v)
+f(x —u,y—v)—S(f;2,y) if u,v >0
fle+0,y4+v)+ fle =0,y +v) + f(x + 0,y —v)
= +f(x =0,y —v)=S(f;z,y)ifu=0,v>0
fle+u,y+0)+ f(x —u,y+0)+ f(zr+u,y — 0)
+f(x —u,y—0)—=S(f;z,y) ifu>0, v=0
Oifu=v=0.

and S(f;x,y) is as defined in (1.18).

The above result is a two-variable extension of the result due to Bojanié
Theorem Q.
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1.5 Rate of convergence of rational Fourier se-

ries

For n € N and = € [—m, 7|, the partial sum of rational Fourier series of f is given
by

Suf (@) =Y [(k)er(e™),

k=—n

where f(k) is k™ rational Fourier coefficient (1.8) of f.

The conjugate rational Fourier series is given by

o

> (=i)sgn(n) f(n)gn(e™).

n=-—oo

and the partial sum of conjugate Fourier series of f is given by

n

Suf(x) =Y (—i)sen(k) f(k)or(c™).

k=—n

Here, if we take ay, = 0, for all £ € N in (1.5), then the conjugate rational Fourier

series reduces to the conjugate Fourier series.

The analogous Dirichlet-Jordan test for rational Fourier series was ob-
tained by Dzrbasyan [19, Theorem 1, p. 26] when the rational Fourier series was
introduced. Tan and Qian [60, Theorem 2.4, p. 545] obtained the rate of conver-
gence of rational and conjugate rational Fourier series for continuous functions of

bounded variation as follows:

Theorem V. If f € BV(]0,27]) is continuous then

st = s < DS (o0 [ 5])

st ()] < 557 v (5[],
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f(x;h) = l/ —f(uL — 1) dt.

n<jyj<x 2tan(t/2)

The above result generalizes Theorem Q and Theorem S for rational

Fourier series for continuous functions.

In Chapter 4, the result of Theorem V (p. 31) is generalized and rate
of convergence of rational and conjugate rational Fourier series for functions of
A— bounded variation is established. Thus, an analogous result to Waterman’s
Theorem R (p. 28) is obtained for rational and conjugate rational Fourier series.
Furthermore, Theorem R (p. 28) is extended for two variable continuous functions
of A— variation in Hardy sense for double rational Fourier series, thus generalizing
the result of Méricz, Theorem U (p. 30).

1.6 Convergence and integrability of trigonomet-

ric and double trigonometric series

The study of convergence of trigonometric series provides insights into how well
a trigonometric series approaches a given function and is closely linked to or-
thogonality properties of sine and cosine or exponential functions. Conditions for
trigonometric series’ integrability provide insights into series convergence and the
behaviour of the converging functions in a broader sense. The study of partial
differential equations often involves the use of trigonometric series. Convergence

properties are crucial for solutions represented by these series.

Definition 1.6.1. Let z € T and {c¢(n)},ez be a sequence of complex numbers,

then (complex) trigonometric series is defined as

Z c(n)e™. (1.19)

[n|<oo

It is worth noting that if the coefficients of the trigonometric series are

Fourier coefficients of some function, then the trigonometric series becomes the
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Fourier series of that function. Understanding convergence and integrability prop-
erties is essential for analysing functions in context of Fourier series and other

orthogonal functions.

The study of trigonometric series is conducted with conditions on the
sequence of complex numbers, {¢(n)}nez. The concept of bounded variation for

sequences [7, p. 3] is defined as follows:

Definition 1.6.2. A sequence of complex numbers {c¢(n)},ez is said to be of

bounded variation, written as {¢(n)},ez € BV, if

Z le(n)] < oo.

ne”

In 1954, Ul'yanov [64] obtained the following significant results for sine

and cosine series.

Theorem W. Let [(z) =Y > a,cosnz and g(z) = > apsinnx. If {a,}>°,

n=1 n=1

is a null sequence of bounded variation then f, g € LP[0,27) for any 0 < p < 1.

In 1980, the concept of bounded variation of higher order for sequences
was defined by Garrett et. al. [23, Definition 1.3, p. 424].

Definition 1.6.3. A sequence of complex numbers {c(n)}32 ___ is said to be of
bounded variation of order m (denoted by BV™), m € N if

S IAme(n)]| < oo,

n=—oo

where A™c(n) = A™ !¢(n) — A™ l¢(n + 1) and A%(n) = ¢(n).
The following inclusion relation [23, p. 424] holds:
BY™ c Byt

The above inclusion is strict and can be shown using the example discussed by
Garrett et. al. [23, p. 424].

In 1984, Stanojevic [58, p. 371] generalized Ul’yanov’s result for trigono-

metric series by considering the condition of bounded variation of higher order
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for the coefficients of the series as follows:

Theorem X. If for some m € N, a complex sequence {c(n)}nez € BV™ then the

trigonometric series (1.19)

(i) converges pointwise to some function f(z) for every x € T \ {0}.

(ii) converges in LP(T)-metric to f for any 0 < p < L.

In 1988, Moricz [40] studied convergence and integrability of double trigono-
metric series by defining bounded variation for double sequences.
Definition 1.6.4. The double trigonometric series is defined as

> D el Resee (1:20)
Jj=—00 k=—00

where {c(j, k) : —00 < j,k < oo} is a double sequence of complex numbers and

(z,y) € T

Let the rectangular partial sums of double trigonometric series (1.20) be

Six(z.y) =Y Y eG ke e, (1.21)

l71<J [k|<K

given by

The series (1.21) is said to converge in Pringsheim’s sense to f(x, y) if Syx(z,y) —

f(x,y) as min(J, K) — oo. In addition, if the row series > - iz giky

€

j=—o0 G, K)
)e

converges for each fixed value of k and the column series > o c(j, k)e'ieetv

converges for each fixed value of j then the double trlgonometrlc series (1.20) is

said to converge regularly [29] to f(z,v).

Definition 1.6.5. A double sequence of complex numbers {c(j, k) }; x)cz2 is said
to be of bounded variation (denoted by BV,) if

Yo D 1Ak < oo,

Jj=—00 k=—00

where Ac(j, k) =c(j, k) —c(j+ 1, k) —c(j,k+1)+c(j+1,k+1).

Moricz [40] obtained the following result for double trigonometric series.
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Theorem Y. If a double complex sequence {c(j, k)}(jrezz € BV, and c(j, k) —
0 as max(|j], |k|) — oo, then the double trigonometric series (1.20)

(i) converges regularly to some function f(x,y) for every (x,y) € (T\{0})%

(ii) converges in LP(T?)-metric to f for any 0 < p < 1 when min(j, k) —

In 1998, Chen and Wu [12, p. 395] defined the notion of bounded variation

of higher order for double sequences.

Definition 1.6.6. A double sequence of complex numbers {c(j, k) }; x)cz2 is said
to be of bounded variation of order m (denoted by BVY') if ¢(j, k) — 0 as
max(|j],|k|) = oo and for m € N,

lim Y [Amoc(f, k)| =0,
Jj=—o0c

|k|—o0

lim Y [Agme(j, k)] =0
k=—o00

|j]—o00

and f: i |Ame(d, k)| < oo;

j=—00 k=—o0

where
AOOC(jv k) = C(j? k)a
Apnc(d, k) = A1 nc(Jo k) — A1 ne(f + 10k) (m > 1)
and
Apnc(d, k) = ANpnac(fo k) — App1c(d, k+1) (n > 1),
Here,

A F) =3 ;(—W () tpira. a2

p=0 ¢ p

Kaur et al. [32, Theorem 3.1, p. 272] studied results related to convergence
and integrability of double trigonometric series where the double sequence of

coefficients is of double bounded variation of order m.

Theorem Z. If for some m € N, a double complex sequence {c(j, k)}jrezz €
BV3', then the double trigonometric series (1.20)
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i) converges regularly to some function f(z,y) for every (z,y) € (T\{0})?.

ii) converges in L?(T?)-metric to f for any 0 < p < -- when min(j, k) — oo.

In Chapter 5, the rational trigonometric series with the orthogonal system
as the Takenaka Malmquist system having fixed poles is considered. The result
related to convergence and integrability similar to Theorem X (p. 34) is obtained
for this rational trigonometric series. Furthermore, this result is extended by
considering double rational trigonometric series and thus the result similar to

Theorem Z (p. 35) for double rational trigonometric series is obtained.
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