Chapter 2

Order of magnitude of rational
Fourier coeflicients

The Riemann Lebesgue Lemma is insufficient in providing the order of magnitude
of classical Fourier coefficients and the order of Fourier coefficients holds signifi-
cant mathematical importance for understanding the behaviour of the function.
Thus, the study of the order of magnitude of Fourier coefficients for functions of
bounded variation has been the subject of extensive research. Recently, in 2013,
Tan and Zhou [62] gave the Riemann Lebesgue Lemma type result for rational
Fourier series. Also, they estimated the order of magnitude of rational Fourier
coefficients for the function of ® — A— bounded variation, which was analogous
to the result for Fourier coefficients due to Schramm and Waterman (Theorem C

on p. 8).

The order of magnitude of classical Fourier coefficients varies depending
on the class of functions of generalized bounded variation considered. Thus, it
is interesting to note the difference when these results are obtained for ratio-
nal Fourier coefficients. In this chapter, the results for order of magnitude of
rational Fourier coefficients for the classes of functions of generalized variations
like Akhobadze’s BA(p(n) 1 p, ¢, T) class (Definition 1.1.7 on p. 10)) and Vyas’
ABV (p(n) 1 p, ¢, T) class (Definition 1.1.6 on p. 8) are obtained, using the tech-
nique given by Tan and Zhou [62]. Also, the order of rational Fourier coefficients

for functions in Lip(a, p)[0, 27| class (Definition 1.1.1 on p. 2) is estimated.

Recall that we have assumed that the parameters «y, defined in the ra-
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tional orthogonal system (1.5), satisfies the condition (1.6) and 7 is as defined in
(1.6). Also, the notation T = [0,27) and Z* = Z \ {0} will be used throughout
this chapter.

Theorem 2.0.1. If f € Lip(p; 3)(T), p>1, € (0,1] and m € Z* then

Proof. There exists hy € [0,27] such that 0),,/(z 4+ h1) — 6}, (z) = 7 and we also

have |hy| < (ﬁltr):; which implies |pjm (2 + h1) — pmi(z)] < \mT(J;T)r)‘l Then for

m € Z*,we have

A 1 _
flm) = 5= [ 1@)n(e)da
= i —i sgn(m) O\, (w)d
- /Tf(w)mm(x)e im1 () g
- 4i | [f(@)ppm) () = f(@ 4+ h1)ppm(x + hi)]e™ sgn(m) Ojm|(2) o0
T JT
Therefore,

Fol < 5= [ 1+ W)opta+ ) = F(@)om(e)lda
< g | [t ) = F e + s
# [ 1@ o+ 1) = o)l

VL [t i)~ s
- fvenas {25

Using Jensen’s inequality, we get

po L1\ _xpmw .
e < | (F)7 [1rte+ ) - stapas+ S0y Hf!l]

) o)
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where C' is some positive constant. Thus,

e =0 (o o )

[m|? |m[P
Hence, the result follows. O

Remark 1. The above result of the order of rational Fourier coefficients is anal-

ogous to the classical result of the Fourier coefficients, Theorem A (p. 2).

Lemma 2.0.2. ABV (p(n) 1 p,¢,T) and ABV (p(n) Tp,
for1 <p < 0.

2(11:7«) ®, T) coincides

The result can be proved by following similar steps as in [4, Lemma 3.

Theorem 2.0.3. If f € ABV (p(n) 1t p, o, T), 1 <p < oo andn € Z*, then

where
7(n) =min{k: k€ N,p(k) >n},n>1. (2.1)

Proof. By the property of 6),(x) and following similar steps as in [62, Theorem
2.2], we get, for an integer j € [0,2|n|], there exists an increasing sequence x; €

[0, 27] such that 0, (z + ;) — O}, (z) = jm and by the mean value theorem,

r(1+7r)t/2 r(1+7)%2n
N 4 < NV e e < =T 7 )
il (@ + 25) — po (T + 2j-1)| < (1— )52 (2; —j-1) < (1 — r)772|n| (2.2)

o (1—nr)r (14+7r)r

<ai—wig < A
(L+r)nf =7 (1 =7)[n|
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Therefore, for n € Z*,

fm) = /f(x +25) piag (@ + z5)e" B A .
T
By using pjn(z — z;) < /1% and (2.2), we get,

A 1
[Fml < /T | (@ 4 5) pmi (@ + 25) = [ (2 + 2j21) ppuy (€ + 2521)[d

Scl/T|f(cc+mj)—f(x+xj_1)|dx+%,

r(1+1)32|| fllx

1/2
where ¢; = 1= (1)  and ¢, = oy

Dividing both the sides by A; and summing from j =1 to 2|n|, we get

2|n| 2|n|

" Co 1 |f l"“l‘a f(£U+I'j_1)|
- dz.
(- 5) 35 <0 3 5 ’
7j=1
By applying Holder’s inequality on the right side of the above inequality, we get
2|n|
(1o w) X5,
1 1
2[n| pn [ 2)n| aCr(n))

(x4 25) — [+ a;_) [P
<o [ | L 35w I
J

where p(r(l\n|)) + q(r(1|n|)) =1 and p(7(|n|)) is as given in (2.1).
Hence,
~ 27-‘-(31‘/A n (f» 2(11_:)@7T) Co
] < p(\ )\ 1< ) " W
2n| 1) PC(n
(Zrs)
Thus, the proof follows from Lemma 2.0.2. O

Remark 2. If o, = 0, Vk € N, then in the above result, r = 0, thus only the first
term remains as the second term is multiple of r. Hence, we get the analogous

result of Fourier coefficients, similar to Theorem D on p. 9.
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Theorem 2.0.4. If f € BA(p(n) 1 00, ,T) and n € Z*, then

fn)=0 (é)
| 7

T(n):min{k;:keN,gp(k)znGJrr)},nzL (2.3)

-

where

Proof. There exists h; € [0, 2] such that 0),/(z 4+ h;j) — 0, (z) = jm for j = 1,2

and hy; < hy. By the mean value theorem, we get

(14 7)4/2 r(147)%2x
| pnj(z 4+ ho) — py(z + he) |< m(hQ —h) < EDaE
as (1—r)r (1477
ATl <P B ST TaT

Therefore, for n € Z* and by following similar steps as in [62, Theorem 2.1], we
get

701 < 3= [ 17+ Radona + ) = o+ b+ ) | do

gcl/T|f(x+h2)—f(x+h1)]dw+%,

r(14+1)32|| fllx

1/2
where ¢; = 1= (1) 2 and ¢, = TR

Let hy — h1 = by sy + Gy
then by Holder’s inequality, we have

= 1 and p(7(| n |)) be as given in (2.3),

| f(n) | < cl/h‘M | f(z+ ho) — f(z+h) | hmdﬂ%
T n
) 1
p(7(Inl))
< {h_l/ | [+ ha) — f(z+ hy) ]p(T(‘"l)) (]T}

1
a(r(in) W e
hp(r( M dx + =2
|n |
Co

< aMpl1 1 1 o0 T2yt et ¢ 0
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1
=0 1 |-
| n ’p(f(\n))

Hence, the result is obtained. O

Remark 3. If oy = 0, Vk € N, then in the above result, by putting » = 0, we

get the analogous result for Fourier coefficients, Theorem E on p. 10.
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