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1 Introduction

Albert Einstein developed the gravitational theory known as general theory of relativity
in 1915. Gravity was viewed in classical mechanics as a force, that is operated between
two objects having mass. However, by adding the idea of spacetime curvature, Einstein’s
general relativity offers a fresh perspective on gravity. According to the general theory of
relativity the presence of matter curves up the geometry of associated spacetime, where
the metric is described by the Riemannian metric

ds2 = gijdx
idxj.

The metric coefficients gij, is known as fundamental tensor, plays an important role in
the formation of Einstein’s field equations. Einstein’s field equations are described as

Rij −
1

2
Rgij = −8πG

c4
Tij,

where, i, j = 0, 1, 2, 3. Rij denotes Ricci tensor, R denotes Ricci scalar and Tij is the
energy-momentum tensor that contains information of physical properties of spacetime.
Rij and R have the following expressions:

Rij =
∂

∂xj
Γk
ik + Γl

ikΓ
k
lj + Γl

ijΓ
k
lk −

∂

∂xk
Γk
ij (1)

where

Γk
ij =

1

2
gkl(glj,i + gli,j − gij,l)

are components of Christoffel symbol of second kind and

R = gijRij.

For static spherically symmetric spacetime metric,

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2θdϕ2), (2)

Einstein’s field equation leads to four second order non-linear ordinary differential
equations, out of which three equations are independent. Due to the non-linear nature
of Einstein’s field equations, it is difficult to obtain a closed-form (exact) solution of
Einstein’s field equations. Exact solution plays a significant role in understanding the
properties of compact stars. The energy momentum tensor for anisotropic fluid distribu-
tion can be defined as

Tij = (ρ+ p⊥)uiuj + p⊥gij + (pr − p⊥)χiχj, (3)
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where ρ is the matter density, pr is the radial pressure, p⊥ is the tangential pressure,
ui is the four-velocity of the fluid and χi is a unit spacelike four-vector along the radial
direction so that uiui = −1, χiχj = 1 and uiχj = 0, for spacetime metric (2) and energy-
momentum tensor (3), the Einstein’s field equations takes the form

8πρ =
1− e−λ

r2
+

e−λλ′

r
, (4)

8πpr =
e−λν ′

r
+

e−λ − 1

r2
, (5)

8πp⊥ = e−λ

(
ν

′′

2
+

ν ′2

4
− ν ′λ′

4
+

ν ′ − λ′

2r

)
, (6)

8π∆ = 8πpr − 8πp⊥, (7)

where primes denote differentiation with respect to r. The system of equation (4-7)
governs the behavior of the gravitational field for anisotropic fluid distribution.

1.1 Elementary Criteria for Physical Acceptability

The non linearity of Einstein’s field equations makes challenging to find exact solutions.
Presently, a number of distinct exact solutions are available in the literature (for e.g.[8]).
Delgaty and Lake[5] studied 127 solutions of Einstien’s field equations out of which 16 only
satisfy physical plausibility conditions and only 9 solutions satisfy causality conditions.
The following conditions must be satisfied for a solution to be physically acceptable [[9],
[3], [6] and [10]].

(a) Regularity Conditions:

(i) The solution should be free from the physical and geometric singularities. i.e.
eλ(r) > 0, eν(r) > 0 in the range 0 ≤ r ≤ a, where a is the radius of the stellar object.
(ii) The radial and transverse pressures and density of the distribution should be non
negative, i.e. ρ(r) ≥ 0, pr(r) ≥ 0, p⊥(r) ≥ 0, for 0 ≤ r ≤ a.
(iii) Radial pressure pr should vanish at the boundary r = a i.e. pr(r = a) = 0.

(b) Behavior of measure of anisotropy:

Pressure anisotropy ∆ = pr − p⊥ should vanish at the centre, i.e. ∆(0) = 0.

(c) Energy Condition:
Each of the energy conditions, namely Weak Energy Condition (WEC), Null Energy

Condition (NEC) and Strong Energy Condition (SEC) must be satisfied for an anisotropic
fluid sphere which are as follows

(i)NEC : ρ > 0, (8)
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(ii)WEC : ρ− pr > 0, ρ+ p⊥ ≥ 0, (9)

(iii)SEC : ρ− pr − 2p⊥ ≥ 0, (10)

(d) Monotone decrease of physical parameters:

The pressure and density should be maximum at the center of the star and monoton-
ically decrease towards the boundary. Mathematically, this means,

dρ
dr

= 0, dpr
dr

= 0, dp⊥
dr

= 0, for r = 0
and

d2ρ
dr2

< 0, d2pr
dr2

< 0, d2p⊥
dr2

< 0, for r = 0
so that,

dρ
dr

< 0, dpr
dr

< 0, dp⊥
dr

< 0, for 0 ≤ r ≤ a

(e) Equation of state:

The ratio of pressure to density, pr
ρ
, p⊥

ρ
, should be monotonically decreasing towards

the boundary. i.e. d
dr

(
pr
ρ

)
= 0 and d

dr

(
p⊥
ρ

)
= 0 at r = 0 and d2

dr2

(
pr
ρ

)
< 0 at r = 0 and

d2

dr2

(
p⊥
ρ

)
< 0 at r = 0.

(f) Charge Distribution:

The electric field intensity E should be such that E(0) = 0 and monotonically increas-
ing towards the boundary. i.e. dE

dr
> 0, for 0 < r < a.

(g) Mass to Radius Ratio:

The allowable mass to radius ratio is given by M
a
≤ 4

9
. According to [3], the mass radius

relation must satisfy the inequality, M
a
≤ 4

9
. But when we introduce the electric field inside

the matter distribution, it modifies this upper limit as proposed by Buchdahl’s. Later,
[1] (upper limit of Mch

a
) and [2] (lower limit of Mch

a
) give the modified mass-radius limit

in the presence of electric charge inside the matter distribution, which can be described
as follows:

Q2(18a2 +Q2)

2a2(12a2 +Q2)
≤ Mch

a
≤ 2a2 + 3Q2 + 2a

√
a2 + 3Q2

9a2
,

where, Mch is the total mass of the compact object for the charged perfect fluid matter
distribution.

(h) Gravitational Redshift and Surface Redshift:
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The surface redshift zs can be obtained as,

zs =

(
1− 2

m(r)

r

)− 1
2

− 1. (11)

The gravitational redshift z should be monotonically decreasing towards the boundary of
the star. The central redshift zc and boundary redshift za must be positive and finite.
That is,

zc = e−ν/2 − 1 > 0, at r = 0

and
za = e−ν/2 − 1 > 0, at r = a.

(i) Causality condition:
0 ≤ dpr

dρ
≤ 1, 0 ≤ dp⊥

dρ
≤ 1, for 0 ≤ r ≤ a.

The values for the radial speed of sound waves dpr
dρ

denoted as ν2
r and transverse speed of

sound waves dp⊥
dρ

denoted as ν2
t . These velocities are in the range of 0 and 1.

(j) Matching Conditions:

(I) For uncharged matter distribution, the interior solution obtained should match
continuously with Schwarzschild exterior metric

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2(dθ2 + sin2θdϕ2), (12)

at the boundary of the star r = a. This gives eν(a) = e−λ(a) = 1− 2M
a
.

(II) For a charged matter distribution, the interior metric should match with the
Reissner-Nordström exterior spacetime

ds2 =

(
1− 2M

r
+

Q2

r2

)
dt2 −

(
1− 2M

r
+

Q2

r2

)−1

dr2 − r2(dθ2 + sin2θdϕ2) (13)

This leads to across the boundary r = a of the star. This gives
eν(a) = e−λ(a) = 1− 2M

a
+ Q2

a2
.

Further the static steller configuration must be stable.
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2 Outline of the thesis:

Chapter:1

This chapter contains the introduction and derivation of Einstein’s field equations for
static spherically symmetric anisotropic matter distribution. Schwarzschild interior and
exterior solutions are also discussed in this chapter.

Chapter:2

A class of new solutions for Einstein’s field equations, by choosing the ansatz eλ(r) =
1+k r2

R2

1+ r2

R2

for static spherically symmetric spacetime metric (2), are obtained under Karmarkar con-
dition. Which says

R1414R2323 = R1212R3434 +R1224R1334, (14)

substituting the components of Riemann curvature tensor Rijkl in (14). The karmarkar
condition takes the form

ν
′′

ν ′ +
ν

′

2
=

λ
′
eλ

2 (eλ − 1)
. (15)

The general solution of equation (15) is given by

eν =

[
A+B

∫ √
(eλ(r) − 1)dr

]2
, (16)

where A and B are constants of integration.
The anisotropy takes the form

8π
√
3S = −ν ′e−λ

4

[
2

r
− λ

′

eλ − 1

] [
ν ′eν

2rB2
− 1

]
. (17)

In the case of isotropic distribution of matter, we have S = 0 which leads to either
2
r
− λ′

eλ−1
= 0 or ν′eν

2rB2 − 1 = 0. The former case leads to Schwarzschild [12] exterior
solution and the latter gives the solution given by Kohler and Chao [7]. It is found that a
number of pulsars like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, PSR J1614-
2230, Cen X-3 can be accommodated in this model. We have displayed the nature of
physical parameters and energy conditions throughout the distribution using numerical
and graphical methods for a particular pulsar 4U 1820-30 and found that the solution
satisfies all physical requirements.
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Chapter:3

In this chapter we have studied a new class of interior solutions that are singularity-free
and useful for describing anisotropic compact star objects with spherically symmetric
matter distribution. We have considered metric potential grr as B2

0(r) =
1

(1− r2

R2 )
n
,where

n > 2. The various physical characteristics of the model are specifically examined for the
pulsar PSRJ1903+327 with estimated data. According to analysis, every condition need
for a physically admissible star is satisfied. Further the stability of the model has been
examined. Numerous physical characteristics are also highlighted in a graphical form.

To develop a physically reasonable model of the stellar configuration, we assume that
the metric potential grr is expressed

B2
0(r) =

1

(1− r2

R2 )n
, (18)

where n > 0 is any real number. By selecting this metric potential, the function B2
0(r) is

guaranteed to be finite, continuous and well-defined within the range of stellar interiors.
Also B2

0(r) = 1 for r = 0 ensures that it is finite at the center. Again, the metric is
regular at the center since (B2

0(r))
′
r=0 = 0. We have generalized the work of Das et.al.[4],

where authors have developed model for steller configuration by considering n = 4. It is
observed that all the physical quantities are well behaved up to n = 70.

Chapter:4

In this chapter new exact solutions of Einstein’s field equations for charged stellar models
have been derived by choosing ansatz eλ = 1+ r2

R2 and considering linear equation of state
for radial pressure Pr = Aρ−B, where A and B are constants. The expression of charge
is consider as

E2 =
α r2

R2

R2(1 + r2

R2 )2
, (19)

The physical acceptability conditions of the model are investigated, and the model is
compatible with several compact star candidates like 4U 1820-30, PSR J1903+327, EXO
1785-248, LMC X-4, SMC X-4, Cen X-3. A noteworthy feature of the model is that it
satisfies all the conditions needed for a physically acceptable model. It is obseved that
when α = 0. i.e. in the case of uncharged matter distribution the model reduces to the
model studied by Thomas and Pandya [13].
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Chapter:5

A new form of linear equation of state relating radial pressure and density on Finch
Skea spacetime have been considered in this chapter. The solution of field equations have
been obtained and expression of density, radial pressure and tangential pressure have
been calculated. The interior spacetime metric is matched with Schwarzschild exterior
spacetime metric

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2θdϕ2), (20)

and the values of constants of integration and mass have been obtained. It is observed
that the total mass of steller configuration is one fourth of radious. Further, all the phys-
ical plusibility conditions are satisfied.

Chapter:6

Nasheeha et.al.[11] studied that models of steller configuration by considering metric
potential grr =

1+ar2

1+(a−b)r2
and equation of state

pr = τρ(1+
1
p
) + ηρ− ω, (21)

where τ, η, ω and p are real constants. It is noted that the metric potential gtt and many
physical entities are not well-behaved in the case of a = b. We consider metric potential
grr = 1 + ar2 which is particular case of grr =

1+ar2

1+(a−b)r2
when a = b. If p=1 in equation

(21), then it becomes a quadratic equation of state. If τ = 0 in equation (21), then it
becomes a linear equation of state. If η = 0, in equation (21), then it becomes polytrope
with polytropic index p. If p = −1

2
, ω = 0 and τ = −α, in equation (21), then it becomes

chaplygin equation of state. If p = −2, then it becomes a color-flavor-locked (CFL)
equation of state. The physical viability of models is tested for strange star candidate 4U
1820 - 30 having mass M = 1.58M⊙ and radius R = 9.1 km. All the models are found
to be physically plausible.

3 Paper Presented in Conference:

• I have presented the paper ”Relativistic stars under Karmarkar condition on pseudo-
spheroidal spacetime” in ICMMAAC-21 held at JECRC University, Jaipur (Raj.),
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India, in the duration of 5-7 August 2021

• I have presented the paper ”New charged anisotropic solution on paraboloidal space-
time” in ICMTA-2022 held at the Department of Mathematics, SRM Institute of
Science and Technology, in the duration of 23-25 March 2022.

• I have presented the paper ”A new model of compact star suitable with pulsar
4U 1820-30” held at the Department of Mathematics, Veer Narmad South Gujarat
University, duration of 4-5 March 2023.

4 List of Research Paper published in Journals:

• Ratanpal, B S and Thomas, V O and Patel, Rinkal, Compact relativistic stars
under Karmarkar condition,New Astronomy, 100 (2023) 101970.

• Ratanpal, B S and Patel, Rinkal, Anisotropic approach: compact star as a gener-
alized model, Astrophysics and Space Science, 368 (2023) 21.

• Patel, Rinkal and Ratanpal, B S and Pandya, D M, New charged anisotropic solu-
tion on paraboloidal spacetime, Astrophysics and Space Science, 368 (2023) 58.

5 List of Research articles Communicated in Journals:

• I have Communicated ”Anisotropic star with linear equation of state” in Chinese
Journal of Physics.

• I have Communicated ”A various equation of state for Anisotropic models for a
compact star” in The European Physical Journal-Plus.

Some of References are as follows.
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