
Chapter 1

Introduction

General relativity, formulated by Albert Einstein more than a century ago, revolu-

tionized our understanding of gravity. The General Theory of Relativity (GTR) is

based on two postulates. The principle of covariance suggests that the laws must

be expressible in a form which is independent of the particular spacetime coordi-

nates chosen, that is, laws of nature remain invariant with respect to any spacetime

coordinate system. The principle of equivalance says that in the neighbourhood

of any given point, we distinguish between the gravitational field produced by the

attraction of masses and the field produced by the accelerating frame of reference.

1.1 Tensor Calculus

The tensor calculus is highly used in general relativity to describe Einstein’s field

equation. These field equations relate the geometry of spacetime to the distribution

of matter and energy.

According to the general theory of relativity, the presence of matter curves up the

geometry of associated spacetime, where the metric is described by the Riemannian

metric. According to John A. Wheeler, “Spacetime tells matter how to move, matter
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CHAPTER 1. . . . 1.1. TENSOR CALCULUS

tells spacetime how to curve”.

ds2 = gijdx
idxj, i = 0, 1, 2, 3; j = 0, 1, 2, 3. (1.1)

where gij is fundamental tensor and g =|gij| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We define gij = 1
|g| × Co-factor of gij, in this determination, |g| ≠ 0.

The tensor gij is called reciprocal tensor of gij. The Riemann-Christoffel Curvature

tensor is defined as

Ra
ijk = −

∂Γa
ij

∂xk
+

∂Γa
ik

∂xj
− Γb

ijΓ
a
bk + Γb

ikΓ
a
bj, (1.2)

where, Christoffel symbols of first and second kind are respectively defined by

Γij,a =
1

2

(
∂gaj
∂xi

+
∂gai
∂xj

− ∂gij
∂xa

)
, (1.3)

Γa
ij = galΓij,l. (1.4)

Christoffel symbols are not tensor quantities but are used to describe the Riemann-

Christoffel Curvature tensor. By contracting Ra
ijk w.r.t., a and k, gives Ricci tensor

denoted by Rij and defined as

Rij = Ra
ija = −

∂Γa
ij

∂xa
+

∂Γa
ia

∂xj
− Γb

ijΓ
a
ba + Γb

iaΓ
a
bj, (1.5)

and by contracting the Ricci tensor Rij, we get the Ricci scalar R in the following

manner

R = gijRij. (1.6)
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The behavior of spacetime in the presence of matter is governed by the Einstein’s

field equations. Throughout the thesis, we use stable spherically symmetric space-

time metric, which can be written in two ways. One with signature (+,-,-,-) in this

case Einstein’s field equations are described as

Rij −
1

2
Rgij = −8πG

c2
Tij, (1.7)

and other with signature (-,+,+,+) in this case Einstein’s field equations are de-

scribed as

Rij −
1

2
Rgij =

8πG

c2
Tij, (1.8)

where, i, j = 0, 1, 2, 3. Rij denotes Ricci tensor, R denotes Ricci scalar, and Tij

is the energy-momentum tensor that contains information on physical properties of

matter distribution. G is the Newtonian gravitational constant and c is the speed

of light.

Einstein’s field equations are a collection of 10 second-order, non-linear partial dif-

ferential equations. The Bianchi identity ∇iGij = 0, reduces the number of inde-

pendent equations to six.

1.2 Energy Momentum Tensor

Einstein’s field equations (1.7) connect the geometry of the spacetime with the

matter content producing curvatures in the spacetime.
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1.2.1 Dust Fluid

The stress-energy tensor of a relativistic pressureless fluid is

T ij = ρuiuj (1.9)

where ρ is the mass density in the dust’s rest frame and ui is the dust’s four-velocity.

1.2.2 Perfect Fluid

The energy-momentum tensor for a perfect fluid is a mathematical representation of

the distribution of energy, momentum and stress within a fluid that behaves as an

idealized fluid. For a perfect fluid, the energy-momentum tensor takes the following

form

T ij = (ρ+ p)uiuj − pgij, (1.10)

where ρ is the energy density of the fluid in the comoving frame (rest frame of the

fluid), p is the pressure of the fluid in the comoving frame, ui is the four-velocity

vector of the fluid, and gij is the metric tensor of spacetime.

1.2.3 Electromagnetic Field

The energy-momentum tensor associated with a distribution of charge is given by

Ej
i =

1

4π

(
−FikF

kj +
1

4
FmnF

mnδji

)
, (1.11)

where F ′
ijs are components of electromagnetic field tensor satisfying Maxwell’s equa-

tions

Fij,k + Fjk,i + Fki,j = 0, (1.12)
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and

∂

∂xk
(F ik

√
−g) = 4π

√
−gJ i. (1.13)

The four current J i is defined as

J i = σui, (1.14)

where σ denotes the charge density of the distribution. For a static distribution

ui = (e−
ν
2 , 0, 0, 0). (1.15)

The spherical symmetry implies that electromagnetic field tensor Fij has F10 = -

F01 as its only non-vanishing component. The Maxwell’s equations (1.12) and (1.13)

admit

F01 = −e
(λ+ν)

2

r2

∫ r

0

4πr2σe
ν
2 dr (1.16)

as their solution.

1.2.4 Anisotropic Fluid Distribution

A fluid distribution with radial pressure different from tangential pressure is termed

as an anisotropic fluid distribution. According to Maharaj and Maarten [122], we

write the energy-momentum tensor as

Tij = (ρ+ p)uiuj − pgij + πij, (1.17)
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where ρ is the proper density, p is the isotropic pressure, ui the four-velocity field

of the fluid. The anisotropic stress tensor is given by

πij =
√
3S[CiCj −

1

3
(uiuj − gij)], (1.18)

where Ci = (0,−e
λ
2 , 0, 0) is a radially directed vector and S = S(r) denotes the

magnitude of anisotropy. The non-vanishing components of the energy-momentum

tensor are

T 0
0 = ρ, T 1

1 = −
(
p+

2S√
3

)
, T 2

2 = T 3
3 = −

(
p− S√

3

)
, (1.19)

and define the radial and tangential pressures as

pr = p+
2S√
3
, p⊥ = p− S√

3
. (1.20)

The magnitude of anisotropy obtained as

S =
pr − p⊥√

3
, (1.21)

as the magnitude of anisotropy. For a perfect fluid distribution pr = p⊥ and hence

S = 0.

1.3 Field Equations

For static spherically symmetric spacetime metric,

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2θdϕ2), (1.22)
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Einstein’s field equations lead to four-second-order, non-linear ordinary differential

equations, of which three equations are independent. Due to the non-linear nature

of Einstein’s field equations, it is difficult to obtain a closed-form (exact) solution

of Einstein’s field equations in general. Exact solution plays a significant role in

understanding the properties of compact stars.

The energy-momentum tensor for anisotropic fluid distribution can be defined as

Tij = (ρ+ p⊥)uiuj + p⊥gij + (pr − p⊥)χiχj, (1.23)

where ρ is the matter density, pr is the radial pressure, p⊥ is the tangential pressure,

ui is the four-velocity of the fluid and χi is a unit spacelike four-vector along the

radial direction so that uiui = −1, χiχj = 1 and uiχj = 0. For spacetime metric

(1.22) and energy-momentum tensor (1.23), with G = c2 = 1 the Einstein’s field

equations takes the form

8πρ =
1− e−λ

r2
+

e−λλ′

r
, (1.24)

8πpr =
e−λν ′

r
+

e−λ − 1

r2
, (1.25)

8πp⊥ = e−λ

(
ν

′′

2
+

ν ′2

4
− ν ′λ′

4
+

ν ′ − λ′

2r

)
, (1.26)

8π
√
3S = 8πpr − 8πp⊥, (1.27)

where prime (′) denotes differentiation with respect to r. The system of equations

(1.24-1.26) governs the behavior of the gravitational field for anisotropic fluid dis-

tribution.

Karl Schwarzschild [170] first described the exact solution of Einstein’s field equa-

tion for empty spacetime then the interior of stellar objects with constant density

was studied by Schwarzschild [171]. This model is reasonably good at describing the

interior of stellar structures with low pressure.
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Chandrasekhar [34] has articulated ’...The life history of a small-mass star must

be fundamentally different from that of a large-mass star... A tiny mass star en-

ters the white-dwarf stage... A massive star cannot enter this stage, leaving us to

speculate on other possibilities.’ When a star’s gravitational pull is balanced by its

internal pressure, it remains in an equilibrium state. When the star’s nuclear fuel

is exhausted, it loses its equilibrium and begins to collapse. A star with an initial

mass less than the Chandrasekhar limit of 1.4 M⊙, where M⊙ is the solar mass, falls

into an equilibrium state known as a white dwarf star, whose gravitational pull is

balanced by pressure electron degeneracy.

Theoretical investigation of Ruderman [168] and Canuto [31] suggests that pressure

may not be isotropic at ultra-high density. Bowers and Liang [28] demonstrated

that anisotropy in pressure has a non-negligible impact on the maximum equilibrium

mass and surface redshift of astrophysical objects. Herrera and Santos [76] provided

a comprehensive overview of anisotropic fluid distributions. Tolman [208] developed

a method to find exact solutions to Einstein’s field equations for static fluid spheres.

Pant and Sah [145] generalized Tolman’s VI solution (with parameter B = 0) by

considering charge into account. Bayin [7] discovered the solution for the anisotropic

fluid sphere and also examined the radiating anisotropic fluid sphere. Pant and Sah

[146] extended Tolman’s I, IV, and V solutions, as well as the de Sitter solution,

to derive a new class of static solutions by assuming an equation of state. Using

the ansatz eν ∝ (1 + x)n, Durgapal [52] generated a class of new exact solutions for

spherically symmetric static fluid spheres. With a modification in the Tolman III,

IV, V, and VI Solutions, Krori et. al. [94] obtained exact solutions of Einstein’s field

equations for the anisotropic matter. A new ansatz has been designed by Maartens

and Maharaj [129] to determine the exact solution to Einstein’s field equations.

Patel and Koppar [153] obtained the charged analog of Vaidya and Tikekar [211] solu-
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tion on spheroidal spacetime. Two exact analytical solutions to Einstein’s field equa-

tions for anisotropic matter distribution that describe the maximum mass, causality

condition, and surface and central redshifts have been studied by de Leȯn [46]. Ma-

haraj and Maarten [122] obtained an exact solution for Einstein’s field equations.

Delgaty and Lake [45] examined 127 solutions of Einstein’s field equations out of

which only 9 satisfy physical plausibility conditions including causality conditions.

Many authors worked on geometrically significant spacetime metric, whose space

part has specific geometry.

1.4 Geometrically Significance Spacetime Metric

Considering static spherically symmetric fluid distribution as

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2θdϕ2), (1.28)

with an ansatz

eλ(r) =
1 + ar2

1 + br2
(1.29)

where a and b are geometrical parameters.

The t = constant section satisfies the cartesian equation

x2 + y2 + z2

L2
− w2

A2
+

w

A
= 0, (1.30)

immersed in a four-dimensional Euclidean space with metric

dσ2 = dx2 + dy2 + dz2 + dw2, (1.31)
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where the parameter a and b are related by

a =
4(1 + A2

L2 )

L2
, b =

4

L2
, (1.32)

The space part of metric (1.28) is obtained by introducing,

x = rsinθcosϕ,

y = rsinθsinϕ,

z = rcosθ,

w =
A+ A

√
1 + 4 r2

L2

2
.

(1.33)

Combining equation(1.28) and (1.29) gives,

ds2 = eν(r)dt2 − 1 + ar2

1 + br2
dr2 − r2(dθ2 + sin2θdϕ2), (1.34)

This metric is also a consequence of Matese and Whitman’s function [97].

(i) Case-I : a = − k
R2 , b = − 1

R2 , where k and R are geometric parameter.

In this case, the metric (1.34) takes the form

ds2 = eν(r)dt2 −
1− k r2

R2

1− r2

R2

dr2 − r2(dθ2 + sin2θdϕ2), (1.35)

which is known as spheroidal spacetime metric developed by Vaidya and Tikekar

[211], for k < 1 the space part of the metric (1.35) is regular, for k = 1 the space

part of the metric (1.35) represents flatspace and for k = 0 the space part of the

metric (1.35) represents a 3-sphere.

In the case of perfect fluid,

(i) when k = 0 and eν(r) = [A + B
√

1− r2

R2 ]
2, metric (1.35) gives Schwarzschild

interior solution.
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(ii)when k = 0 and ν = 0, metric (1.35) gives the Einstein’s universe.

(iii)when k = 0 and eν(r) = 1− r2

R2 , metric (1.35) gives the de Sitter’s universe.

A number of researchers have used spacetime metric (1.35) to describe physically fea-

sible models of superdense stars with matter as charged fluid distribution, anisotropic

fluid distribution, and perfect fluid distribution. Few of these are Tikekar [202],

Finch and Skea [57], Singh and Kotambkar [176], Paul et. al. [156], Thirukkanesh

[191].

(ii) Case-II : a = k
R2 , b =

1
R2 , where k and R are geometric parameters.

In this case, the metric (1.34) takes the form

ds2 = eν(r)dt2 −
1 + k r2

R2

1 + r2

R2

dr2 − r2(dθ2 + sin2θdϕ2), (1.36)

which is known as the pseudo-spheroidal spacetime metric. The metric (1.36) is

regular for k > 1. This metric has been developed and studied by Tikekar and

Thomas [203]. Later, several authors considered pseudo-spheroidal spacetime metric

to model physically viable stars. Few of these are Tikekar and Thomas [204], Tikekar

and Thomas [205], Thomas et. al. [196], Thomas and Ratanpal [197], Paul et.

al. [156], Chattopadhyay and Paul [36], Chattopadhyay et. al. [37], Thomas and

Pandya ([198], [199]), and Ratanpal et. al.([159], [158]).

(iii) Case-III : a = 1
R2 , b = 0, where R is geometric parameter.

In this case, the metric (1.34) takes the form

ds2 = eν(r)dt2 −
(
1 +

r2

R2

)
dr2 − r2(dθ2 + sin2θdϕ2), (1.37)

which is called paraboloidal (also known as Finch Skea[57]) spacetime metric. How-

ever, paraboloidal can not be obtained from cartesian equation (1.30) due to which

it is not possible to obtain a solution on paraboloidal spacetime metric by setting
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b=0 in equation (1.29). The paraboloidal case has to be tackled separately. This

form of Finch Skea metric was considered by Jotania and Tikekar [85]. Various

authors considered this spacetime metric to develop models of compact stars. Few

of them include Ratanpal et. al. [160], Banerjee et. al. [8], Hansraj and Maharaj

[68], Maharaj et. al. [118].

The spacetime metric (1.34) was considered by several authors. Sharma et. al. [177]

studied the general solution for a class of static charged spheres by assuming E2 =

α2(1−x2)
R2(1+λ−λx2)2

with metric potential grr = e2µ =
1+λ r2

R2

1− r2

R2

. Thirukkanesh and Maharaj

[188] studied the exact models for isotropic matter with metric potential grr =
1+ar2

1+r2
.

Maharaj and Komathiraj [125] studied the exact solutions to the Einstein-Maxwell

system of equations in spherically symmetric gravitational fields with an electric field

intensity. Komathiraj and Maharaj [90] presented exact solutions to the Einstein-

Maxwell system of equations with a specific form of E2 = αk(x2−1)
R2(1−k+kx2)2

. Sharma

and Maharaj [178] presented an exact solution to the Einstein field equations with

anisotropic matter distribution by assuming mass function m(r) = br3

2(1+ar2)
using the

linear equation of state. Komathiraj and Maharaj [91] obtained a new class of exact

solution to the Einstein-Maxwell system of equations which can be used to model

the interior of charged relativistic objects. Feroze and siddiqui [56] studied a charged

anisotropic matter with the quadratic equation of state. Takisa and Maharaj [184]

studied the Einstein-Maxwell system of equations with anisotropic pressures and

electromagnetic field using the polytropic equation of state. Takisa and Maharaj

[186] studied a charged compact object with anisotropic pressure in a core envelope

star using the quadratic equation of state in the core part and a linear equation

of state in the envelope part. Thirukkanesh et. al. [194] studied the impact of

anisotropy on the superdense relativistic stars.

Utilising a spherically symmetric spacetime metric, Mak and Harko [121] obtained
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exact anisotropic solutions of Einstein’s field equations. Sharma and Ratanpal [179]

generated the exact solution of Einstein’s field equations on a static spherically sym-

metric spacetime metric. Gupta and Maurya [65] obtained a class of charged analog

of Durgapal and Fuloria [53] solution for the superdense star. Maurya and Gupta

[99] studied the charged analog of a neutral solution with ansatz grr = (1 + cr2)6

on a static spherically symmetric spacetime metric. Maurya and Gupta [98] ob-

tained extremum mass of charged superdense star models using metric potential

grr = B(1 + cr2)n. Murad [114] studied a class of interior solutions of the Einstein-

Maxwell system of equations for a static spherically symmetric distribution of a

charged perfect fluid. Murad and Fatema [115] and Fatema and Murad [55] ob-

tained an exact solution of static spherically symmetric perfect fluid spheres of the

Einstein-Maxwell field equations. Murad and Fatema [117] obtained charged and

anisotropic models in generalized Tolman IV spacetime. Pandya et. al. [149] stud-

ied the static spherically symmetric anisotropic system using modified Finch and

Skea ansatz. Dayanandan et. al. [43] investigated the stability of an anisotropic

compact star model using Matese and Whitman solutions in general relativity. Bhar

et. al. [17] obtained a relativistic anisotropic compact star model having a metric

potential grr = 1 + a2r2

(1+br2)4
using embedding class one. Sharma et. al. [180] stud-

ied superdense relativistic stars with anisotropic matter distribution. Khunt et. al.

[96] studied the core envelope model of highly compact stars using the quadratic

equation of state. By assuming pressure anisotropy Bhar and Rej [20] obtained a

new model of anisotropic compact star with modified Finch Skea spacetime. Bhar

et. al. [21] obtained a singularity-free spherically symmetric stellar model with

anisotropic pressure using the Tolman ansatz (Tolman [208]). Das et. al. [41]

studied the anisotropic extension of the well-known Tolman IV solution to model

realistic compact stellar objects.
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1.5 Compact Stars

A compact star is the final stage of stellar evolution, arising from a star’s gravi-

tational collapse after its nuclear fuel runs out. White dwarfs, neutron stars, and

black holes are examples of these objects. All three states described for a star during

its evolution are known as compact stars (Shapiro et. al. [172]). White dwarfs are

dense objects of low to medium mass; neutron stars emerge when more massive stars

collapse; and black holes form when very massive stars crash. Extreme densities and

gravitational forces characterize these objects.

In comparison to normal stars, compact stars have two distinguishing characteristics.

The first characteristic of compact stars is their ultra-high density. Despite having

masses comparable to or lower than the Sun, these stars have been reduced into

significantly smaller volumes, resulting in extraordinarily dense cores. The second

characteristic of compact stars is gravitational collapse. This collapse occurs because

the star’s internal pressure is no longer sufficient to overcome gravity, resulting in

an enormous decrease in size and a rise in density.

1.5.1 White Dwarfs

White dwarf stars have a radius of about 5000 km and a density of about 1 ton/cm3

(Misner et. al. [134]). White dwarfs are low to medium-mass stars (up to 8M⊙)

that have used all their nuclear fuel. Electron degeneracy pressure, a quantum

mechanical process, protects these objects from gravitational collapse. Over time,

white dwarfs cool and darken, eventually becoming cold and dark ”black dwarfs.”
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1.5.2 Neutron Star

A neutron star is an astronomical object known for its exceptional compactness and

density, primarily composed of neutrons. These unique celestial bodies form as a

consequence of the supernova explosion of a massive star. Large stars undergo a

catastrophic collapse when their nuclear fuel is exhausted. The collapse is driven

by gravitational forces, leading to the formation of neutron stars. The small size

is a result of gravitational collapse during their formation. Neutron stars exhibit

extraordinarily strong gravitational fields. Surface gravity on a neutron star is ap-

proximately 100 billion times greater than that of Earth. Neutron stars often have

fast rotation rates. Some neutron stars, known as pulsars, emit beams of electro-

magnetic radiation as they rotate. When these pulsars move across the earth’s line

of sight, the radiation is observed as regular pulses. Neutron stars maintain stability

as long as their mass does not exceed a limit close to 2 M⊙.

1.5.3 Black Holes

A black hole is a region of spacetime characterized by an incredibly powerful grav-

itational field, preventing the escape of anything, including particles and electro-

magnetic radiation like light. The boundary surrounding this region is known as

the event horizon. Black holes are formed when massive stars, having exhausted

their fuel, succumb to gravity and collapse. The gravitational pull of a black hole

is so powerful that it warps the fabric of spacetime around it. It earned the name

”black” because it absorbs all light that strikes it, making the region invisible. The

gravitational pull of a black hole is exceptionally strong, warping spacetime in its

vicinity. Supermassive black holes can have masses ranging from hundreds of thou-

sands to billions of times that of the sun. The exact procedure for the formation

of black holes is currently under study. The first strong case for a black hole in
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a binary system was that of Cygnus X-1, an X-ray source investigated by Bowyer

et. al. [25]. This structure provides a clear overview of black holes, covering their

formation, key characteristics, event horizon, mass range, the ongoing study of their

creation, and the historical context of the first identified black hole.

The study of compact stars remains an area of interest in relativistic astrophysics

as they provide a platform for the observational work of these objects and vice-

versa. Hewish et. al. [4] identified the first pulsar, CP 1919, subsequently known as

PSR B1919+21, in the year 1968. The finding of the first pulsar was a significant

breakthrough in relativistic astrophysics. Antony Hewish and Sir Martin Ryle shared

the Nobel Prize in Physics in 1974 for discovering pulsars. Oppenheimer and Volkov

[143] established a relativistic theory of neutron stars. Observational data show that

the masses of compact pulsating objects may range from 1 to 2 M⊙, even though

the majority of neutron star masses are grouped around 1.4 M⊙. The diameters of

such tiny objects might range between 5 - 15 km given by Shapiro and Teukolsky

[173], Prakash et. al. [157], Akmal et. al. [2]. In Table (1.1) masses and radii of

some of the observed compact stars are given.

Table 1.1: Masses and radii of some observed compact stars.

Object Mass M⊙ Radius (Km) References

PSR J1614-2230 1.97 ± 0.04 9.69 ± 0.2 Demorest et. al. [49]
Cen X-3 1.49 ± 0.08 9.178 ± 0.13 Rawls et. al. [163]
Vela X-1 1.77 ± 0.08 9.56 ± 0.08 Rawls et. al. [163]
PSR J1903 + 327 1.667 ± 0.021 9.438 ± 0.03 Freire et. al. [60]
SMC X-4 1.29 ± 0.05 8.831 ± 0.09 Rawls et. al. [163]
LMC X-4 1.04 ± 0.09 8.301 ± 0.2 Rawls et. al. [163]
Her X-1 0.85 ± 0.15 8.1 ± 0.41 Rawls et. al. [163]
4U1608-52 1.74 ± 0.14 9.528 ± 0.15 Güver et. al. [66]
4U1820-30 1.58 ± 0.06 9.316 ± 0.086 Güver et. al. [67]

EXO 1785-248 1.3 ±0.2 8.849 ± 0.4 Özel et. al. [144]
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1.6 Layout of the thesis

The thesis is organized as follows:

Chapter 1 contains an introduction to the general theory of relativity. It also con-

tains the summary of each chapter of the thesis.

Chapter 2 describes a class of new solutions for Einstein’s field equations under

Karmarkar [86] conditions, by choosing the ansatz eλ(r) =
1+k r2

R2

1+ r2

R2

in static spheri-

cally symmetric spacetime metric (1.22). The Karmarkar [86] conditions provides a

relation between Riemann curvature tensor Rijkl in the form

R1414R2323 = R1212R3434 +R1224R1334. (1.38)

This can be written in the form

ν
′′

ν ′ +
ν

′

2
=

λ
′
eλ

2 (eλ − 1)
, (1.39)

for the metric (1.22). The general solution of equation (1.39) is given by

eν =

[
A+B

∫ √
(eλ(r) − 1)dr

]2
, (1.40)

where A and B are constants of integration.

The pressure anisotropy takes the form

8π
√
3S = 8πpr − 8πp⊥ = −ν ′e−λ

4

[
2

r
− λ

′

eλ − 1

] [
ν ′eν

2rB2
− 1

]
. (1.41)

In the case of isotropic distribution of matter, we have S = 0 which leads to either
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2
r
− λ′

eλ−1
= 0 or ν′eν

2rB2 − 1 = 0. The former case leads to Schwarzschild [169] exterior

solution and the latter gives the solution given by Kohler and Chao [92]. It is found

that some pulsars like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, PSR

J1614-2230, Cen X-3 can be accommodated in this model. We have displayed the

nature of physical parameters and energy conditions throughout the distribution us-

ing numerical and graphical methods for a particular pulsar 4U 1820-30 and found

that the solution satisfies all physical requirements.

Chapter 3 deals with a new class of singularity-free interior solutions describing

anisotropic matter distribution on static spherically symmetric spacetime metric.

Das et. al. ([39], [40]) considered metric potential grr as B2
0(r) = 1

(1− r2

R2 )
4
, and

B2
0(r) = 1

(1− r2

R2 )
6
, respectively and developed the models of relativistic stars. We

have generalized the work of Das et. al. ([39], [40]) by considering metric potential

grr as

B2
0(r) =

1

(1− r2

R2 )n
, (1.42)

where n > 2 is a positive integer. Also, B2
0(r) = 1 ensures that it is finite at the

centre. It is regular at the centre since (B2
0(r))

′
= 0, we obtained the models of

relativistic stars and it is observed that all the physical quantities are well behaved

up to n= 70. The various physical characteristics of the model are examined for the

pulsar PSRJ1903+327. Analysis shows that all the physical acceptability conditions

are satisfied.

Chapter 4, In this chapter the new exact solutions of Einstein-Maxwell system

of equations for charged anisotropic models have been obtained by choosing ansatz

eλ = 1+ r2

R2 , here we consider linear equation of state for radial pressure pr = Aρ−B,

18
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where A and B are constants. The expression of charge is considered as

E2 =
α r2

R2

R2(1 + r2

R2 )2
, (1.43)

The physical acceptability conditions of the model have been investigated, and it

is shown that the model is compatible with several compact star candidates like

4U 1820-30, PSR J1903+327, EXO 1785-248, LMC X-4, SMC X-4, Cen X-3. A

noteworthy feature of the model is that it satisfies all the conditions needed for a

physically acceptable model. It is observed that when α = 0. i.e. in the case of

uncharged matter distribution the model reduces to the Thomas and Pandya [200].

Chapter 5, contains a new exact solution of Einsteins’s field equations on Finch

Skea spacetime. In the literature, one assumes a linear equation of state of the

form pr = αρ − β, where ρ is the density and pr is the radial pressure and α and

β are constants. Note that the linearity is in terms of density and not in terms

of the radial variable r. This implies that α and β might not be constants and

could be the functions of the radial variable r as well. Keeping this in mind in

our work, to develop an anisotropic stellar model, we assume a linear equation of

state of the form pr = α
(
1− r2

R2

)
ρ, where 0 < α < 1. This assumption allows

us to generate a new class of exact solution to the Einstein field equations which

is physical plausible. The solution of field equations has been obtained and the

expression of density, radial pressure, and tangential pressure have been calculated.

The interior spacetime metric is matched with the Schwarzschild exterior spacetime

metric

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2(dθ2 + sin2θdϕ2), (1.44)

and the values of constants of integration and mass have been obtained. It is ob-
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served that the total mass of stellar configuration is one-fourth of the radius. The

bound on parameter α has been calculated and it is observed that all the physical

plausibility conditions are satisfied for 0.06 < α < 0.17. In particular the pulsar 4U

18020 30 has been considered to demonstrate that all physically viable conditions

are satisfied.

Chapter 6, In this chapter, we have reported that Nasheeha et. al. [137] studied

that models of steller configuration by considering metric potential grr = 1+ar2

1+(a−b)r2

and equation of state

pr = τρ(1+
1
p
) + ηρ− ω, (1.45)

where τ, η, ω and p are real constants. It is noted that the metric potential gtt and

many physical entities are not well-behaved in the case of a = b. We consider metric

potential grr = 1+ar2 which is particular case of grr =
1+ar2

1+(a−b)r2
when a = b. If p =

1 in equation (1.45), then it becomes a quadratic equation of state. If τ = 0 in equa-

tion (1.45), then it becomes a linear equation of state. If η = 0, in equation (1.45),

then it becomes a polytrope with polytropic index p. If p = −1
2
, ω = 0 and τ = −α,

in equation (1.45), then it becomes a Chaplygin equation of state. If p = −2, then

it becomes a color-flavor-locked (CFL) equation of state. The physical viability of

models is tested for strange star candidate 4U 1820 - 30 having mass M = 1.58M⊙

and radius R = 9.1 km. All the models are found to be physically plausible. The

stability of our model with various equations of state has been compared with the

work of Nasheeha et. al. [137].

Appendix contains units conversion then the list of publications is given. At last

bibliography is provided.
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