
Chapter 1

Introduction

This chapter contains a brief history and overview of celestial mechanics from the

beginning of seventeenth century to the present year. During this period, there has

been a tremendous advancement in works related to the dynamics of two and three

bodies. Studies on periodic, quasi–periodic and chaotic motion of a body in the

restricted three–body problem and stability, resonance phenomena, effect of solar

radiation pressure and oblateness of the primaries are reviewed. The development

of the equations of motion and the methodology used for the generation of Poincaré

surface of sections are also presented.

1.1 Historical survey

Mechanics deals with the behavior of physical bodies under the effect of forces.

Celestial mechanics is the branch of astronomy that deals with motion of celestial

objects. In celestial mechanics, one applies the principles of mechanics to astronomi-

cal objects, such as stars and planets to produce ephemeris data. Orbital mechanics,

a sub–field of celestial mechanics, deals with the orbits of planets and satellites.

Modern analytical celestial mechanics started with the publication of Newton’s

Philosophiae Naturalis Principia Mathematica in the year 1687. Over a cen-

tury after Newton, Pierre Simon Laplace introduced the term Celestial Mechan-

ics. Johannes Kepler(1571–1630) was the one to introduce predictive geometrical

astronomy. Prior to Kepler there was little connection between exact quantitative
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prediction of planetary positions, using geometrical or arithmetical techniques.

Kepler enunciated his three laws of planetary motion during 1609 – 1619. These

laws laid the foundation for the beginning of modern celestial mechanics. Kepler’s

three laws of planetary motion are

1. The orbit of each planet is an ellipse with the Sun located at one focus.

2. The radius vector of each planet sweeps out equal areas in equal time.

3. The square of the orbital period of a planet is proportional to the cube of its

semi–major axis.

Kepler’s laws of planetary motion led Newton to conclude that the force which keeps

a planet in its orbit around the Sun varies inversely as the square of the distance

between the Sun and the planet. Most of the results in celestial mechanics are

obtained by treating the bodies as point masses. Such an assumption is justifiable

mainly because of two reasons. Firstly, all members of solar system are separated

by large distances and the dimension of the bodies is negligible compared to their

separating distance. Secondly, all bodies can be assumed as spheres in the first

approximation.

The gravitational attraction between two spherical bodies is, according to Newton’s

law of Gravitation, equal to the gravitational attraction between two point masses

located at the respective centres of the two spherical bodies, each endowed with the

mass of the body it represents. Thus, the problem of studying the gravitational force

between two spherical bodies reduces to the study of motion of two points under

the effect of their gravitational force. This problem is called the classical two–body

problem. It was first solved by Newton by geometrical method and analytic solution

was given by Bernoulli which was further investigated by Euler. The solution of

two–body problem marks the starting point of celestial mechanics.

1.1.1 The three–body problem

In celestial mechanics, a two–body problem describes the motion of two rigid point

masses orbiting about each other under the influence of their mutual gravitational
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attraction. Satellites orbiting a planet, a planet orbiting a star or binary stars

orbiting about their common centre of mass are examples of two–body problem.

A number of researchers tried to extend Newton’s analytical method of solving

two–body problem to three–body problem like Sun–Earth–Moon system. But the

three–body problem, where the masses of all three bodies are arbitrary and are

attracting each other according to Newtonian law and free to move in space with

any initial conditions of motion, can not be solved analytically.

In the solar system, there are many bodies like natural satellites, asteroids and

comets having negligible mass in comparison of planets and stars. Also, motion of

planets around Sun is approximately circular. These facts suggested the concept of

restricted three–body problem. In addition, it is one of the simplest non-integrable

dynamical systems. This problem describes the motion of secondary body which

moves under the gravitational effect of two finite masses called primaries. The pri-

maries are supposed to move in circular orbits around their center of mass (barycen-

ter) on account of their mutual attraction and the secondary body not influencing

the motion of the primaries. It is known as circular restricted three–body prob-

lem (CRTBP). If primaries move in elliptical orbits then the problem is known as

elliptical restricted three–body problem (ERTBP).

The restricted problem has important roles in space dynamics, celestial dynamics

and analytical dynamics and in studying the motion of artificial satellites, natural

satellites, planets, minor planets, and comets. For designing space missions, where a

spacecraft is moving from Earth to Moon or between two planets, the RTBP could

be applied. Problems related to space missions require analytical and numerical

techniques to solve the circular or elliptical RTBP. In recent years, after the launch-

ing of artificial satellites in the Earth–Moon system and in the solar system, the

applications of RTBP has gained considerable momentum in celestial mechanics.

The RTBP has been used first time to analyze lunar theories in 1772 by Euler

and subsequently by [Lagrange (1772)]. They found five stationary points known

as Lagrange points. The contributions of Euler, Jacobi and Poincaré [Poincare

(1892)] are the most significant from the point of view of space mechanics ap-

plications. Many more mathematicians and astronomers have used the theory of

RTBP [Hill(1878), Brunini (1996)],[Poincare (1892), Levi–Civita (1904)] and [Birkoff
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(1915)] in modelling different systems. Using synodic(rotating) coordinate system,

Jacobi evaluated a first integral of equations of motion known as the Jacobi inte-

gral. Jacobi integral connects magnitude of velocity vector and location of secondary

body. Using this some qualitative behaviour regarding the problem can be deter-

mined without actually solving the equations of motion. [Hill(1878)] applied it first

time to celestial mechanics for describing the motion of the Moon. He proved that

distance between Earth and Moon is always bounded. To prove this [Hill(1878)]

used the Jacobi integral. After that Brown in 1896 gave the most precise lunar

theory.

[Pars (1965)] and [Pollard (1966)] have explained dynamics and mathematics in

their books. Theory of orbits by [Szebehely (1967)] is an outstanding treatise on

the restricted problem of three–bodies. [Moulton (1914), Plummer (1918), Winter

(1941), Finlay–Freundlich (1958), Brouwer and Clemence (1961), Danby (1962), Mc

Cuskey (1963), Duboshin (1978)] and [Siegel and Moser (1971)] have given detailed

explanation of dynamics of RTBP.

1.1.2 Effect of solar radiation pressure

Photo–gravitational RTBP describes the motion of secondary body under the effect

of mutual gravitational force of primaries as well as radiation pressure from one or

both primaries. The Sun–Planet–Satellite system can be analyzed by considering

the Sun as a radiating body, while Star–Star–Planet system can be analyzed by

considering radiation pressure of both primaries.

The minute pressure exerted by radiation on bodies is inversely proportional to the

square of the distance between the light source and the illuminated body. This

law is experimentally demonstrated and stated by Lebedev in 1891. Since then

many researchers have incorporated this perturbing force as well as other perturb-

ing forces like oblateness, atmospheric drag etc. in the study of RTBP. The effect

of the radiation force is complicated as it depends on particular geometry, phys-

ical and physicochemical characteristics of secondary body [Poynting (1904)] and

[Robertson (1937)]. It has been found that radiation force produces non–negligible

effects on the dynamics of the secondary body. Some of the noticeable contri-

butions in the photo–gravitational RTBP are by [Radzievskii (1950), Chernikov
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(1970), Kunitsyn and Perezhogin (1978), Bhatnagar and Chawla (1979), schuerman

(1980), Choudhary (1985), Kunitsyn and Tureshbaev (1985), Kumar and Choud-

hary (1987), Sharma and Ishwar (1987), Lukyanov (1988), Ragos and Zagouras

(1988), Ragos and Zagouras (1993), Markellos et. al. (1993), Kalantonis et. al.

(2006), Papadakis (2006), Abdul Raheem and Singh (2006), Kalvouridis et. al.

(2007), Namboodiri et. al. (2008), Das et. al. (2009a)] and [Das et. al. (2009b)].

The radiation force exerted by radiating primary on secondary body, can be divided

into three components, namely, the radiation pressure, the Doppler shift of the

incident radiation and the Poynting drag. The first two components act radially

and the third component acts opposite to the velocity vector. [Poynting (1904),

Robertson (1937)] have analyzed the latter two components, which are caused by

the absorption and subsequent re–emission of radiation and constitute the Poynting–

Robertson effect. Out of these three components of radiation force, the radiation

pressure is the only significant component. The effect of Doppler shift of the incident

radiation and the Poynting drag is negligible on the dynamics of secondary body

[Radzievskii (1950)]. Solar radiation pressure force Fp changes with the distance by

the same law as the gravitational attraction force Fg in opposite direction. According

to [Kalvouridis et. al. (2007)] the resultant force exerted by the Sun on secondary

body is given by,

F = Fg − Fp, (1.1.1)

which can be expressed as

F = qFg, (1.1.2)

where,

q = 1− Fp

Fg
. (1.1.3)

The effect of radiation pressure of the radiating primary on secondary body is ex-

pressed by means of the mass reduction factor

q = 1− ε, (1.1.4)

where the radiation coefficient ε, is the ratio of the force Fp which is caused by
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radiation to the force Fg which results from gravitation; That is

ε =
Fp

Fg
. (1.1.5)

This coefficient ε depends on the physical properties of the radiating primary, as

well as those of the secondary body and is expressed by the formula given by

ε =
3L

16µcGMρs
, (1.1.6)

where G is the gravitational constant. Mass and luminosity of the Sun are denoted

by M and L respectively. [Lukyanov (1988)] found that luminosity of the Sun

depends on the absolute temperature of the Sun. The mass and uniform density

of the secondary body are denoted by s and ρ respectively. ε for given secondary

body of radius a and uniform density ρ can be evaluated by knowing the mass and

the luminosity of the Sun. If perturbing force due to radiation pressure is absent,

it means Fp = 0, then q = 1. If Fp > Fg then ε > 1, it means q < 0. If Fp < Fg

then ε < 1, it means 0 < q < 1. The latter case is applied when we study photo–

gravitational RTBP in the solar system.

1.1.3 Effect of oblateness

In classical RTBP, all the three bodies under consideration are taken as point masses.

Such idealistic considerations are coming from the assumption that celestial bodies

can be considered as spheres. From a physical point of view, it is unbelievable to

take into account the celestial objects as perfect spherical bodies. Celestial objects

will suffer from deformation in its shapes at poles due to the effect of rotation.

For this reason, the oblate spheroid bodies are a good approximation for most of

the celestial objects. RTBP incorporating oblateness of participating bodies have

been considered by [Markellos et. al. (1996)], [Abouelmagd and Sharaf (2013)],

[Abouelmagd et al.(2014)] and [Abouelmagd et. al. (2015)]. Oblateness is one

of the main perturbations we should include when we consider such objects. The

main perturbation forces experienced by the secondary body near Earth are the

forces due to Earth’s oblateness and pressure due to solar radiation apart from the

gravitational force of the Sun and Earth.
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For communication satellites which are located very near to Earth, oblateness of

Earth is the main perturbating force. To study the dynamics of asteroid near Jupiter,

effect of oblateness of the Jupiter is non–negligible. [Brouwer and Clemence (1961)],

[Laplace (1805)], [Greenberg (1974)] and [Tisserand (1896)] have studied the motion

of satellites of Saturn by incorporating perturbation due to oblateness of Saturn.

1.2 Potential due to oblate spheroid

The motion of secondary body has been investigated by making different assump-

tions on the nature and shape of the primaries. They are

1. when more massive body is oblate,

2. when more massive body is source of radiation and second primary is an oblate

spheroid, and

3. when more massive body is source of radiation and both primaries are oblate.

In all the above three cases the motion of secondary body is affected due to per-

turbation. We have studied the photo–gravitational circular restricted three–body

problem in which the infinitesimal body moves under the gravitational effect of the

primaries, which orbit around a common centre of mass in circular orbits. For ex-

ample, the Sun is a source of radiation and is almost spherical, while some of the

planets are oblate. Two primary bodies revolve around their center of mass in cir-

cular orbits in a plane, coinciding with equatorial plane, under the influence of their

mutual gravitational attraction. The third body, called the secondary body, moves

in the plane of primaries under the gravitational effect of the primaries.

We assume that second primary is oblate spheroid. We use A2 to represent oblate-

ness coefficient of the smaller primary. Thus,

A2 = J2R
2, (1.2.1)

where J2 is the dimensionless coefficient that characterizes the size of non spherical

components of the potential with respect to smaller primary. R is the mean radius

of the body.
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If the object has axial symmetry, it can be shown from potential theory that the

gravitational potential experienced by the third body can be written as [Murray and

Dermot (1999)]

V = −Gm0

r

[

1−
∞
∑

n=2

Jn

(R0

r

)n

Pn(sin δ)

]

. (1.2.2)

where G is the universal gravitational constant, m0 and R0 are the mass and the

mean radius of the object, respectively. δ denotes the latitude of the satellite,

Pn(sin δ) are Legendre polynomials of degree n, r is the distance from the centre of

the object to satellite and Jn is the dimensionless coefficient that characterizes the

size of non spherical components of the potential.

1.3 The mean motion

In orbital mechanics, the mean motion, denoted by n, refers to the angular speed

required by the body to make one complete orbit. If τ denotes the orbital period,

then the mean motion is given by n = 2π/τ . To obtain the effect of oblateness on

the mean motion, we shall proceed as follows. If the motion of two objects is in the

same plane (δ = 0) then (1.2.2) becomes,

V = −Gm0

r

[

1−
∞
∑

n=2

Jn(
R0

r
)nPn(sin 0)

]

, (1.3.1)

where,

P2n(0) =
(−1)n(2n)!

22n(n! )2
, (1.3.2)

and

P2n+1(0) = 0. (1.3.3)

For the first zonal harmonic, equation (1.3.1)can be reduced to,

V = −Gm0

[

1

r
+

J2R
2
0

2r3

]

. (1.3.4)

Now assume that m1, m2 and m are the masses of the bigger, smaller and infinites-

imal bodies, r1 and r2 are the distance of the m from m1 and m2, respectively. Let

m1 and m2 have circular orbits about their common centre of mass and m is moving
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under their gravitational influence in the same plane but it is so small that it does

not affect their motion. Let

~r = uî+ vĵ (1.3.5)

be the position vector of m2 with respect to m1, r is the separation distance between

m1 and m2. Using equation (1.3.1), the potential V12 between m1 and m2 can be

written as

V12 = −Gm1m2

[

1

r
+

A2

2r3

]

, (1.3.6)

where,

A2 = J2R
2
0. (1.3.7)

The equation of motion of m2 with respect to m1 can be written as

~̈r = −m1 +m2

m1m2
∇V12, (1.3.8)

where,

∇ =
∂

∂u
î+

∂

∂v
ĵ. (1.3.9)

Taking u = r cos nt and v = r sinnt in equation (1.3.5) and differentiating twice, we

get

~̈r = −n2~r. (1.3.10)

Further, we have

∇V12 =

(

Gm1m2

[

1

r3
+

3

2

A2

r5

])

~r. (1.3.11)

Now using equations (1.3.10) and (1.3.11) in equation (1.3.8), we get the expression

for mean motion as

n2 = G(m1 +m2)

[

1

r3
+

3

2

A2

r5

]

. (1.3.12)

For a spherical body, A2 = 0, and hence we get n2 =
G(m1 +m2)

r3
.
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1.4 Equations of motion with perturbation due to

solar radiation and oblateness

Consider the RTBP in which the bigger primary of mass m1 is a source of radiation

and the smaller primary of mass m2 is an oblate spheroid. To obtain the equations

of motion for the secondary body, we choose the origin O as the centre of mass of

the two primaries. We choose XY as the sidereal frame xy as the synodic frame

such that O serves as the origin for both systems. We also choose the synodic frame

to rotate with angular velocity n in the positive direction. Let the co-ordinates of

m1, m2 and m in the sidereal frame be (X1, Y1), (X2, Y2) and (X, Y ), respectively,

and that in the synodic frame be (x1, y1), (x2, y2) and (x, y), respectively.

The transformation from synodic system(x, y) to inertial sidereal system (X, Y ) is

given by

(

X

Y

)

=

(

cosnt − sin nt

sin nt cosnt

)(

x

y

)

, (1.4.1)

where,
(

cos nt − sinnt

sinnt cosnt

)

is a transformation matrix. The equations of motion for the secondary body in the

inertial sidereal frame, using Newton’s law, are

mẌ = −∂V

∂X
, (1.4.2)

and

mŸ = −∂V

∂Y
. (1.4.3)

Here V = V1+V2, where V1, V2 denote the gravitational potential due to the masses

m1 and m2. Since the first primary is radiating and the second primary is oblate

spheroid, we express V in the form

V = −Gmm1

[

q

r1

]

−Gmm2

[

1

r2
+

A2

2r32

]

. (1.4.4)

Adopting the terminology of [Szebehely (1967)], we choose r = 1 and the unit of
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mass is chosen such that µ = 1. This implies that Gm1 = (1 − µ) and Gm2 = µ.

The coordinates of masses m1 and m2 are taken as, (x1, y1) = (µ, 0) and (x2, y2) =

(µ− 1, 0), respectively.

The velocity and acceleration components are given, respectively, by

(

Ẋ

Ẏ

)

=

(

cosnt − sinnt

sinnt cosnt

)(

ẋ− ny

ẏ + nx

)

, (1.4.5)

and
(

Ẍ

Ÿ

)

=

(

cos nt − sin nt

sinnt cosnt

)(

ẍ− 2nẏ − n2x

ÿ + 2nẋ− n2y

)

. (1.4.6)

Equations (1.4.2) and (1.4.4) now takes the form

Ẍ = − ∂

∂X

[

−(1− µ)

[

q

r1

]

− µ

[

1

r2
+

A2

2r32

]]

, (1.4.7)

where

r21 = (X −X1)
2 + (Y − Y1)

2, (1.4.8)

and

r22 = (X −X2)
2 + (Y − Y2)

2. (1.4.9)

Using equations (1.4.8), (1.4.9) in (1.4.7) and equating with (1.4.6), we get

(1.4.10)

(

ẍ− 2nẏ − n2x
)

cosnt−
(

ÿ + 2nẋ− n2y
)

sinnt

= −(1− µ)
q

r31

[

[(x− µ) cosnt− y sin nt]

− µ

[

1

r32
+

3A2

2r52

]

[(x− µ+ 1) cosnt− (y) sinnt]

]

.

Similarly by using (1.4.3), we can arrive at

(

ẍ− 2nẏ − n2x
)

sinnt +
(

ÿ + 2nẋ− n2y
)

cosnt

=−(1−µ)
q

r31
[(x−µ) sin nt+y cos nt]−µ

[

1

r32
+
3A2

2r52

]

[(x−µ+1) sin nt+(y) cosnt] .

(1.4.11)
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Equations (1.4.10) and (1.4.11) can, respectively, be couched in the form

ẍ− 2nẏ =
∂Ω

∂x
, (1.4.12)

ÿ + 2nẋ =
∂Ω

∂y
, (1.4.13)

where,

Ω =
n2

2

[

(1− µ)r21 + µr22
]

+
q(1− µ)

r1
+

µ

r2
+

µA2

2r32
. (1.4.14)

Here,

r21 = (x− µ)2 + y2, (1.4.15)

and

r22 = (x+ 1− µ)2 + y2. (1.4.16)

The mean motion n, the mass reduction factor q and the oblateness coefficient A2

are respectively given by

n2 = 1 +
3

2
A2, (1.4.17)

q = 1− Fp

Fg
, (1.4.18)

A2 =
R2

e −R2
p

5R2
, (1.4.19)

where Fg and Fp represent the gravitational and radiation pressure forces, respec-

tively. Re and Rp denote the equatorial and polar radii of second primary, respec-

tively, and R is the distance between primaries.

The system of equations (1.4.12)and (1.4.13) together with equation (1.4.14) admits

a first integral in the form

ẋ2 + ẏ2 = 2Ω− C, (1.4.20)

where the constant of integration C is known as the Jacobi constant and is given by

C = n2
(

x2 + y2
)

+
2q(1− µ)

r1
+

2µ

r2
+

µA2

r32
− ẋ2 − ẏ2. (1.4.21)

The importance of the Jacobi constant is not limited to the concepts of zero velocity

surface and zero relative velocity, but it is used for investigation of the regular and
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chaotic orbits in the RTBP.

1.5 Poincaré maps

In general, algebraic mapping is considered one of the most versatile ways in which

a dynamical system in which non–linear equations are involved, can be studied. We

can use this method to evaluate the position vector of the particle in the phase

space at specified time t, by knowing the position of initial state vector at initial

time t0. This means that the time evolution of the position vector can be described

at discrete intervals. The properties and the structures of the dynamical system,

which is given by the differential equations, can be represented by using a very

simple map.

The properties of complex dynamical systems can be investigated in term of maps

by converting the study of a continuous system to the study of an associated dis-

crete system known as Poincaré map. This technique presents three essential fea-

tures: The dimension reduction, global dynamics, and conceptual clarity. The use

of Poincaré map removes at least one variable in the dynamical system, resulting in

the investigations and analysis of a lower–dimensional system.

Poincaré surface of sections can highlight the existence of periodic and quasi–

periodic orbits. In fact there are two degrees of freedom related to the RTBP

in the barycentric synodic frame and one integral constant of motion (Jacobi con-

stant), is given in equation (1.4.21). Therefore the orbits lie on a 3 − dimensional

subspace C(x, y, ẋ, ẏ) = C embedded into 4 − dimensional phase space. But the

Poincaré map of the autonomous dynamical system requires using of a hyperplane

or a surface section plane. This plane is usually chosen by fixing one of the coor-

dinates, say y = 0, resulting a surface in 3 − dimensions, which is projected into

2−dimensional plane (x, ẋ) by specification of another factor [Murray and Dermot

(1999)]. We assume that the infinitesimal body started from a point on x–axis,

thereby the associated initial value for the perpendicular component of velocity ẏ

can be evaluated from Jacobi constant in equation (1.4.21) by

ẏ =

√

n2x2 +
2q(1− µ)

r1
+

2µ

r2
+

µA2

r32
− ẋ2 − C. (1.5.1)
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The system of equations involved are nonlinear equations and hence obtaining exact

solution of the system is difficult. Hence we resort to numerical techniques for solving

the equations of motion.

For the construction of surface of sections, the origin of the system under considera-

tion is positioned on the center of mass of the primaries while the smaller primary is

assumed to lie on the x–axis to the right side of the more massive primary [Broucke

(1968)]. Thus, the origin of this system is positioned on the center of mass of the

primaries while the bigger and smaller primaries always lie on the Ox axis at (−µ, 0)

and at (1− µ, 0), respectively. Thus, r1 and r2 are respectively given by,

r21 = (x+ µ)2 + y2, (1.5.2)

and

r22 = (x− 1 + µ)2 + y2. (1.5.3)

Using equations (1.4.12), (1.4.13) and (1.4.14), equations of motion can be re written

as,

ẍ = 2nẏ + n2x− (1− µ)(x− µ)q

r31
− µ(x− µ+ 1)

[

1

r32
+

3A2

2r52

]

, (1.5.4)

and

ÿ = −2nẋ+ n2y − (1− µ)yq

r31
− µy

[

1

r32
+

3A2

2r52

]

, (1.5.5)

which are second order ordinary differential equations. To convert equations (1.5.4)

and (1.5.5) in to system of first order differential equations, consider, y1 = x, y2 = ẋ,

y3 = y and y4 = ẏ. Thus, equations (1.5.4) and (1.5.5) can be written as,

ẏ1 = y2, (1.5.6)

ẏ2 = 2ny4 + n2y1 −
(1− µ)(y1 − µ)q

r31
− µ(y1 − µ+ 1)

[

1

r32
+

3A2

2r52

]

, (1.5.7)

ẏ3 = y4, (1.5.8)

ẏ4 = −2ny2 + n2y3 −
(1− µ)y3q

r31
− µy3

[

1

r32
+

3A2

2r52

]

. (1.5.9)

We use Runge–Kutta–Gill fourth order method to integrate the system of first order

differential equations. The algorithm for this method is as follows:
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1. The system of equations are given by

ẏ1 = f1(y1, y2, y3, y4), (1.5.10)

ẏ2 = f2(y1, y2, y3, y4), (1.5.11)

ẏ3 = f3(y1, y2, y3, y4), (1.5.12)

ẏ4 = f4(y1, y2, y3, y4). (1.5.13)

2. Let h be the step size.

3. Evaluate the following quantity:

k1 = hf1(y1, y2, y3, y4), (1.5.14)

l1 = hf2(y1, y2, y3, y4), (1.5.15)

m1 = hf3(y1, y2, y3, y4), (1.5.16)

n1 = hf4(y1, y2, y3, y4). (1.5.17)

4. Now, update y1, y2, y3 and y4 as

y1 = y1 + 0.5k1, (1.5.18)

y2 = y2 + 0.5l1, (1.5.19)

y3 = y3 + 0.5m1, (1.5.20)

y4 = y4 + 0.5n1. (1.5.21)

5. Evaluate the following quantity:

k2 = hf1(y1, y2, y3, y4), (1.5.22)

l2 = hf2(y1, y2, y3, y4), (1.5.23)

m2 = hf3(y1, y2, y3, y4), (1.5.24)

n2 = hf4(y1, y2, y3, y4). (1.5.25)
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6. Now, update y1, y2, y3 and y4 as

y1 = y1 + 0.5k1(−1 +
√
2) + k2(1− 0.5

√
2), (1.5.26)

y2 = y2 + 0.5l1(−1 +
√
2) + l2(1− 0.5

√
2), (1.5.27)

y3 = y3 + 0.5m1(−1 +
√
2) +m2(1− 0.5

√
2), (1.5.28)

y4 = y4 + 0.5n1(−1 +
√
2) + n2(1− 0.5

√
2). (1.5.29)

7. Evaluate the following quantity:

k3 = hf1(y1, y2, y3, y4), (1.5.30)

l3 = hf2(y1, y2, y3, y4), (1.5.31)

m3 = hf3(y1, y2, y3, y4), (1.5.32)

n3 = hf4(y1, y2, y3, y4). (1.5.33)

8. Now, update y1, y2, y3 and y4 as

y1 = y1 −
[

k2√
2
+ (1 +

1√
2
)k3

]

, (1.5.34)

y2 = y2 −
[

l2√
2
+ (1 +

1√
2
)l3

]

, (1.5.35)

y3 = y3 −
[

m2√
2
+ (1 +

1√
2
)m3

]

, (1.5.36)

y4 = y4 −
[

n2√
2
+ (1 +

1√
2
)n3

]

. (1.5.37)

9. Evaluate the following quantity:

k4 = hf1(y1, y2, y3, y4), (1.5.38)

l4 = hf2(y1, y2, y3, y4), (1.5.39)

m4 = hf3(y1, y2, y3, y4), (1.5.40)

n4 = hf4(y1, y2, y3, y4). (1.5.41)

10. Also, yi,1 = x, yi,2 = ẋ, yi,3 = y and yi,4 = ẏ
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11. Then, obtain

yi+1,1 = yi,1 +
1

6

[

k1 + (2−
√
2)k2 + (2 +

√
2)k3 + k4

]

. (1.5.42)

12. Obtain

yi+1,2 = yi,2 +
1

6

[

l1 + (2−
√
2)l2 + (2 +

√
2)l3 + l4

]

. (1.5.43)

13. Obtain

yi+1,3 = yi,3 +
1

6

[

m1 + (2−
√
2)m2 + (2 +

√
2)m3 +m4

]

. (1.5.44)

14. Obtain

yi+1,4 = yi,4 +
1

6

[

n1 + (2−
√
2)n2 + (2 +

√
2)n3 + n4

]

. (1.5.45)

15. i = i+ 1.

16. Repeat the procedure till desire accuracy is obtained.

Equations (1.5.42) through (1.5.45) give (x, ẋ, y, ẏ) of the secondary body at any

time t.

To construct a 2−dimensional Poincaré surface section for a given point (x, ẋ), the

Jacobi constant as well as the hyperplane (surface of section) y = 0 can be used. In

addition, we assume that the infinitesimal body started from a point on x− axis,

thereby the associated initial value for the perpendicular component of velocity ẏ

can be evaluated from Jacobi constant in equation (1.4.21) by using the relation

ẏ =

√

n2x2 +
2q(1− µ)

r1
+

2µ

r2
+

µA2

r32
− ẋ2 − C. (1.5.46)

In this setting, the vector velocity of the infinitesimal body ~V is ruled by

~V = ẋ~i+ (ẏ + n(x+ µ))~j, (1.5.47)

where ~i and ~j are the unit vectors in the directions of the orthogonal axes for
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the rotating frame. With help of equations (1.5.46)and (1.5.47) we can obtain the

magnitude of velocity ~V , the angular momentum h, the semi–major axis a and the

eccentricity e by the following formulae.

V =

√

ẋ2 + [ẏ + n(x+ µ)]2, (1.5.48)

h = (x+ µ) [ẏ + n(x+ µ)] , (1.5.49)

a =

[

2

r1
− V 2

1− µ

]

−1

, (1.5.50)

e =

√

1− h2

a(1− µ)
. (1.5.51)

1.6 Lagrangian points

Lagrangian points or libration points are points at which velocity of secondary body

is zero. The RTBP possesses five stationary solutions. Out of these five points, three

points are collinear points which are on apse–line, the line joining both primaries.

Remaining two points are equilateral points which make equilateral triangles with

primaries.

Figure 1.1: Location of Lagrangian points in RTBP.

As shown in Figure 1.1, M1, M2 and M are masses of the bigger primary, smaller
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primary and secondary body respectively. Three collinear Lagrangian points are

denoted by L1, L2 and L3 respectively. L1 is located between two primaries but

very near to smaller primary. In Sun–Earth system, solar wind can be monitored

using this point as it reaches early on secondary body located at L1 than Earth.

In Earth–Moon system, to study lunar theory, L1 plays an important role. L2 is

located right side of the smaller primary. L3 is located left side of bigger primary. In

Sun–Earth system, this point is located behind the Sun. Thus, any secondary body

orbiting there can not be visible from Earth. These collinear points are unstable

equilibrium points. So, for transferring satellite from orbits around these point to

another orbit, these points can be used.

L4 and L5 are equilateral triangular Lagrangian points. These two points are stable

points. Because of this stability, secondary body like asteroid or dust particles

accumulate at that points. For Sun–Jupiter system asteroids are located at these

two points. Asteroids which are located at L4 are known as Greek camp and which

are located at L5 are known as Trojan camp. Two satellites Tellesto and Callisto of

Tethys, which is a Moon of Saturn, are located at L4 and L5 respectively.

1.7 Layout of the Thesis

The Thesis is divided into seven chapters in which chapter 1 is introduction which

contains motivation and mathematical tools used in the Thesis. This chapter con-

cludes with the summary of subsequent chapters.

Chapter 2 deals with evolution of the periodic orbits, quasi periodic orbits and

chaotic orbits in the photo gravitational Sun-Saturn system incorporating actual

oblateness of Saturn in the planar circular restricted three body problem. The

effect of the perturbation due to solar radiation pressure for various values of Jacobi

constant C on various geometric parameters like location, eccentricity, diameter

and semi major axis of the Sun centered and Saturn centered periodic orbits is

investigated using Poincare surface of section method.

It is observed that the introduction of solar radiation pressure decreases the admis-

sible range of Jacobi constant C, and as the value of C decreases the number of
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islands decreases and consequently the number of periodic and quasi periodic orbits

decreases. Further, the periodic orbits around Saturn and Sun moves towards Sun

on decreasing perturbation due to solar radiation pressure q for a fixed value of Ja-

cobi constant C. It is also observed that due to solar radiation pressure, semi major

axis and eccentricity of Sun centered periodic orbit decrease.

Chapter 3 includes analysis of the periodic orbits of f family (simply symmetric

retrograde periodic orbits) and the regions of quasi-periodic motion around Saturn

in the photo gravitational Sun-Saturn system in the framework of planar circular

restricted three-body problem with oblateness. It is observed that radiation pressure

has significant influence on evolution of family f of periodic orbit. As radiation pres-

sure increases the admissible value of C decreases and periodic orbit shifts towards

Saturn. Also the geometric parameters of the orbits such as diameter, eccentricity

and semi major axis decrease. An increment in C increases the semi-major axis of

f family of periodic orbits while the eccentricity decreases up to certain value of C

and then shows a sudden increase in its value. Diameters of these periodic orbits

decrease slowly, but after certain value of C, there is a sudden decrement in value

of diameter of periodic orbits. It is also observed that as solar radiation pressure

decreases, the location of periodic orbits at both separatrices moves towards Sat-

urn. Also, as q moves towards 1, the value of Jacobi constant corresponding to both

separatrices moves towards 3. Further, the difference between corresponding Jacobi

constant decreases as q decreases up to 0.9845 and then increases slightly. It can be

seen that the difference between location of two periodic orbits at both separatrices

decreases as q drops to the value 0.9845 and then slightly increases. Thus, as the

perturbation due to solar radiation pressure decreases, the two separatrices come

closer to each other and also come closer to Saturn. It is found that the eccentricity

and semi major axis of periodic orbits at both separatrices are increased by pertur-

bation due to solar radiation pressure. The evolution of the family of periodic orbits

can be divided into three stages separated by two separatrices. In other words, there

is a change in the way the quasi-periodic orbits oscillate around the periodic orbits

before and after these separatrices. Family f can be used for patching of trajectory

of satellite, that is, joining of two or more orbits to obtain a trajectory.

In Chapter 4 we have investigated the effect of oblateness on the position, shape and
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size of closed periodic orbit with loops varying from 1 to 5 for Sun-Mars and Sun-

Earth systems, respectively. It is found that for given number of loops and given C,

as oblateness increases, location of periodic orbit moves towards Sun. For given C

and given oblateness, as number of loops increases, location of periodic orbits shifts

towards Sun. Also, for given value of oblateness and given number of loops, as C

decreases, location of periodic orbit moves towards Sun. Also, period of the orbit

increases as number of loops increases. It is also observed that single-loop orbit is

closest to second primary body. Further, as number of loops decreases, width of the

orbit increases. The distance of closest approach of the infinitesimal particle from

the smaller primary increases with oblateness and number of loops for a given C.

Thus, the present analysis of the two systems- Sun-Mars and Sun-Earth systems

using PSS technique reveals that A2 and C has substantial effect on the position,

shape and size of the orbit. The PSS together with regression analysis will help

one to locate the position of the periodic orbit with less effort, using the predicted

positions from the analysis.

It can be observed that for given oblateness and given number of loops, as Jacobi

constant decreases, initial velocity of infinitesimal particle (spacecraft) and distance

of spacecraft from second primary increase and distance of spacecraft from first

primary body decreases. For given Jacobi constant and given number of loops, as

oblateness increases, initial velocity increases and distance of spacecraft from sec-

ond primary increases and the distance of spacecraft from first primary decreases.

Thus, the effects of Jacobi constant C and oblateness coefficient A2 are opposite in

nature. For given value of oblateness coefficient and Jacobi constant, as number of

loops increases, distance of spacecraft from second primary increases and distance

of spacecraft from first primary decreases where as initial velocity of spacecraft de-

creases from one–loop orbit to three–loops orbit and then increases from three–loops

orbit to five-loops orbit. It is further observed that for Sun–Mars system, single–

loop orbit for A2 = 0.00001 and C = 2.96 is closest to Mars and this distance is

3.886× 107 km. Whereas, for Sun-Earth system, single-loop orbit for A2 = 0.00001

and C = 2.96 is closest to Earth and this distance is 2.542× 107 km. Since stability

of this class of periodic orbits is very low, it can be used for designing low-energy

trajectory design for space mission.
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Chapter 5 is devoted to the study of the effect of solar radiation pressure on the

position, shape and size of closed periodic orbit with loops varying from 1 to 5 for

Sun–Mars and Sun–Earth systems, respectively. A noticeable difference observed

in both the systems is that for C = 2.96, q = 0.995, single–loop periodic orbit, for

C = 2.96, q = 0.99, two–loops orbit, for C = 2.96, q = 0.9845, three–loops periodic

orbit does not exist for Sun–Earth system whereas it exist for Sun–Mars system. The

distance of closest approach of the infinitesimal particle from the smaller primary

decreases with increase in solar radiation pressure from 1 to 0.9845 and distance

between smaller primary and infinitesimal particle increases as number of loops in-

creases for a given C and q. It is found that the eccentricity decreases as number of

loops increases. For a given number of loops, the eccentricity is found to decrease

as solar radiation pressure increases from 1 to 0.9845. Thus, the present analysis of

the two systems - Sun–Mars and Sun–Earth systems–using PSS technique reveals

that q and C have substantial effect on the position, shape and size of the orbit.

It can be observed that for given solar radiation pressure and given number of loops,

as Jacobi constant decreases, initial velocity of infinitesimal particle and distance

of infinitesimal particle from second primary increase and distance of infinitesimal

particle from first primary body decreases.

For given Jacobi constant and given number of loops, as solar radiation pressure

increases from 1 to 0.9845, initial velocity decreases and distance of infinitesimal

particle from second primary decreases. So, distance of infinitesimal particle from

first primary increases. Thus, the effect of Jacobi constant C and solar radiation

pressure q is opposite in nature. For given value of solar radiation pressure q and

Jacobi constant, as number of loops increases, distance of infinitesimal particle from

second primary increases and distance of infinitesimal particle from first primary

decreases. It is further observed that for Sun–Mars system, single–loop orbit for

q = 0.995 and C = 2.96 is closest to Mars and this distance is 7.521 × 105 km,

whereas for Sun–Earth system, single–loop orbit for q = 0.99 and C = 2.95 is clos-

est to Earth and this distance is 7.535 × 105 km. Since these orbits can be used

for designing low–energy space mission. Hence detailed study is presented in this

chapter. Stability analysis of this family of orbit indicates that these orbits having

smaller stability region in comparison to f family orbit. So, these orbits can be used

as a transfer trajectory as less amount of fuel required for transferring of satellite

from one orbit to another orbit. For each pair of (q, C), there are two separatrices
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exist where stability of periodic orbit becomes zero.

In Chapter 6 , we investigate exterior and interior first, third and fifth order reso-

nances in the photo–gravitational restricted three–body problem by numerical meth-

ods for the Sun-Earth and the Sun–Mars systems considering the Sun as a radiating

body and Earth or Mars as an oblate spheroid. In this context, the first order ex-

terior and interior resonant orbits are analyzed with and without perturbation for

C = 2.93. It is observed that for the given order of resonance, period of the orbit

is increased by exactly 6 or 7 units as number of loops is increased by one because

period of the second primary (Earth or Mars) body’s orbit is 6.282714 units. It is

noticed that for the external resonance as the number of loops increases, location

of the periodic orbit moves towards the Sun whereas for the internal resonance, as

the number of loops increases, location of the periodic orbit moves away from the

Sun. Also, location of exterior or interior first order resonant orbits moves away

from the Sun as perturbation included. While from location of orbits, we can con-

clude that exterior resonance orbits with and without perturbation are nearer to

the Earth whereas interior resonant orbits are nearer to the Sun. So, for the orbit

having same number of loops, location of interior resonant orbit is nearer to the Sun

in comparison to the exterior resonant orbit.

Eccentricity of the periodic orbit decreases as number of loops increases for both

interior and exterior resonance in both perturbed and unperturbed cases. Also,

for the orbit having same number of loops, eccentricity of interior resonant orbit is

more in comparison to exterior resonant orbit. We also observe that for the given

order of resonance as perturbation increases eccentricity of the periodic orbit de-

creases. Furthermore, we study the evolution of three loops orbit for interior first

order resonance by changing value of Jacobi constant C. As value of C increases,

size of the loop reduces, and hence the shape of the orbit changes and finally it

becomes circle. Thus, as C increases, eccentricity of the periodic orbit decreases

and location of the periodic orbit moves towards the second primary body, namely,

Earth or Mars. Regard to the location of third and fifth order resonant orbits for

C = 2.93, q = 0.9845 and A2 = 0.0001 shifts towards the second primary as the

number of loops increases. Third and fifth order resonant orbits are divided in to

two families. Orbits of Family I are around the first primary only, whereas, orbits
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of Family II are around both the primaries in which one of the loops of the orbit is

around the second primary body, namely, Earth or Mars. It is concluded that for

the given number of loops, as order of resonance increases location of periodic orbits

moves towards the Sun. Also, eccentricity of the orbit decreases as the number of

loops increases, and eccentricity of Family I orbit is higher than Family II orbit for

the given order of resonance. It can be observed that for the given number of loops,

as order of resonance increases eccentricity increases. Period of the first, third and

fifth order resonance orbit increases as the number of loops increases. Also, period

of Family II orbit is higher than the Family I orbit for the given order of resonance.

Further we notice that for the given number of loops, as order of resonance increases

period decreases, which is obvious.

Chapter 7 includes analysis of interior seventh, ninth and eleventh order resonances

in the restricted three-body problem for the Sun-Earth and the Sun-Mars systems

by considering the Sun as a radiating body and both the Earth and Mars as oblate

spheroid. It is observed that for the given order of resonance, period of the orbit

is increased by exactly 6 or 7 units as number of loops is increased by one because

period of the infinitesimal bodys orbit is 6.2827 units. It is concluded that for the

internal resonance, as the number of loops increases, location of the periodic orbit

moves away from the Sun. Eccentricity of the periodic orbit decreases as number

of loops increases for interior resonance in perturbed case. For the given order of

resonance as perturbation increases eccentricity of the periodic orbit decreases. It

is concluded that for the given number of loops, as order of resonance increases

location of periodic orbits moves towards the Sun. Also, eccentricity of the orbit

decreases as the number of loops increases. It can be observed that for the given

number of loops, as order of resonance increases eccentricity increases. Period of

the seventh, ninth and eleventh order resonance orbit increases as the number of

loops increases. It can be observed that for the given number of loops, as order of

resonance increases period decreases, which is obvious.

Chapter 7 is followed by Appendix– A, list of publications and references used dur-

ing the course of research are listed at the end in alphabetic order.
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